The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Inhibition of Smad5 in human hematopoietic progenitors blocks erythroid differentiation induced by BMP4.

Patients with secondary myelodysplasias and acute myeloid leukemias ( MDS/AML) frequently exhibit interstitial deletions of the chromosome-5q resulting in hemizygous loss of the transcription transactivator Smad5. Smad5 is a member of the signal transducer family conveying the pleiotropic TGF-gb/BMP cytokine signals with roles in development, cell growth control, and tumor progression. Here we present a study of the Smad5 expression and its functional role in leukemia cell lines as well as in primary CD34+ progenitors of MDS/AML patients and healthy individuals. Consistent Smad5 gene expression in these cell types and the gradual increase in its mRNA and protein levels in a model of induced erythroid differentiation of murine erythroleukemia (MEL) cells suggest a role of the gene in hematopoiesis. We show that bone morphogenetic protein 4 (BMP4) directs Smad5 activation in human hematopoietic cells, as monitored at the levels of protein phosphorylation, nuclear translocation, and specific transcription response. In vitro induction of normal human CD34+ cells by BMP4 results in significantly increased proliferation of erythroid progenitors (BFU-E) and formation of glycophorin-A+ cells, whereas perturbation of Smad5 expression by antisense oligonucleotides causes significantly decreased rates of BMP4- induced erythroid differentiation. We have not detected any effects of Smad5 inhibition on BMP4-stimulated progenitors of the granulocyteNmacrophage lineage. We propose that the BMP4/Smad5 signal transduction pathway activates hematopoietic differentiation programs that may be impaired in anemia manifestations in MDS and AML patients with Smad5 haploinsufficiency.[1]


  1. Inhibition of Smad5 in human hematopoietic progenitors blocks erythroid differentiation induced by BMP4. Fuchs, O., Simakova, O., Klener, P., Cmejlova, J., Zivny, J., Zavadil, J., Stopka, T. Blood Cells Mol. Dis. (2002) [Pubmed]
WikiGenes - Universities