The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Yeast Tdp1 and Rad1-Rad10 function as redundant pathways for repairing Top1 replicative damage.

When a replication fork collides with a DNA topoisomerase I (Top1) cleavage complex, the covalently bound enzyme must be removed from the DNA 3' end before recombination-dependent replication restart. Here we report that the tyrosyl-DNA phosphodiesterase Tdp1 and the structure-specific endonuclease Rad1-Rad10 function as primary alternative pathways of Top1 repair in Saccharomyces cerevisiae. Thus, tdp1 rad1 cells (including the catalytic point mutant rad1-D869A) not only are highly sensitive to the Top1 poison camptothecin but also exhibit a TOP1-dependent growth delay. Extensive genetic analysis revealed that both Tdp1 and Rad1-Rad10 repair proceed through recombination that equally depends on RAD52, RAD51, and RAD50. The Rad1-Rad10 pathway further particularly depends on RAD59 and SRS2 but is independent of other nucleotide excision repair genes. Although this pattern is consistent with Rad1-Rad10 removing Top1 in a manner similar to its removal of nonhomologous tails during gene conversion, these differ in that Top1 removal does not require Msh2-Msh3. Finally, we show that yeast lacking the Rad1-Rad10-related proteins Mus81-Mms4 display a unique pattern of camptothecin sensitivity and suggest a concerted model for the action of these endonucleases.[1]


  1. Yeast Tdp1 and Rad1-Rad10 function as redundant pathways for repairing Top1 replicative damage. Vance, J.R., Wilson, T.E. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
WikiGenes - Universities