The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Comparison of long-chain alcohols and other volatile compounds emitted from food-borne and related Gram positive and Gram negative bacteria.

Numerous reports have been published on the antimicrobial activity of synthetic volatile long chain alcohols, such as 1-decanol and 1-dodecanol, against bacteria and fungi. The objective of the present study was to survey microorganisms for emission patterns of naturally occurring long chain alcohols and other volatile components to determine if these compounds are associated with certain groups of bacteria. Cultures were grown in trypticase soy broth overnight and volatile compounds were trapped on a porous polymer and identified by mass spectrometry. Subsequently, volatile compounds were collected from 26 strains of food associated bacteria using solid-phase microextraction and analyzed by gas chromatography. Alcohols comprising 1-octanol, 1-decanol, and 1-dodecanol occurred as products from enteric Gram negative bacteria, which included Citrobacter, Enterobacter, Klebsiella, Salmonella, and Shigella. However, the long chain alcohols were not detected as products from the nonenteric Gram negative species studied which included Acinetobacter, Pseudomonas, and Shewanella. Among Gram positive bacteria, including Bacillus, Enterococcus, Lactococcus, Leuconostoc, Listeria, Staphylococcus, and Streptococcus, the only long chain alcohol detected was 1-decanol and, if present, it occurred in relatively small amounts. Other classes of compounds emitted by bacteria included methylketones and sulfides. The methylketones were found as products from Gram positive and Gram negative bacteria, whereas the sulfides were closely associated with Gram positive bacteria. In summary, the emission patterns of volatile compounds from bacteria showed many trends including the association of long chain alcohols with enteric Gram negative bacteria. The results provide a basis for future in vivo studies to determine if volatile compounds such as natural long chain alcohols function in the ecology of food-borne Gram negative bacterial pathogens.[1]

References

  1. Comparison of long-chain alcohols and other volatile compounds emitted from food-borne and related Gram positive and Gram negative bacteria. Elgaali, H., Hamilton-Kemp, T.R., Newman, M.C., Collins, R.W., Yu, K., Archbold, D.D. J. Basic Microbiol. (2002) [Pubmed]
 
WikiGenes - Universities