The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Leuconostoc


High impact information on Leuconostoc


Chemical compound and disease context of Leuconostoc


Biological context of Leuconostoc


Gene context of Leuconostoc


Analytical, diagnostic and therapeutic context of Leuconostoc


  1. Quantitative 2H NMR at natural abundance can distinguish the pathway used for glucose fermentation by lactic acid bacteria. Roger, O., Lavigne, R., Mahmoud, M., Buisson, C., Onno, B., Zhang, B.L., Robins, R.J. J. Biol. Chem. (2004) [Pubmed]
  2. Molecular basis for vancomycin resistance in Enterococcus faecium BM4147: biosynthesis of a depsipeptide peptidoglycan precursor by vancomycin resistance proteins VanH and VanA. Bugg, T.D., Wright, G.D., Dutka-Malen, S., Arthur, M., Courvalin, P., Walsh, C.T. Biochemistry (1991) [Pubmed]
  3. Flow cytometric assessment of viability of lactic acid bacteria. Bunthof, C.J., Bloemen, K., Breeuwer, P., Rombouts, F.M., Abee, T. Appl. Environ. Microbiol. (2001) [Pubmed]
  4. Membrane permeabilization of Listeria monocytogenes and mitochondria by the bacteriocin mesentericin Y105. Maftah, A., Renault, D., Vignoles, C., Héchard, Y., Bressollier, P., Ratinaud, M.H., Cenatiempo, Y., Julien, R. J. Bacteriol. (1993) [Pubmed]
  5. Detection of methionine in pernicious anemia megaloblasts and other types of erythroid precursors. Kass, L. Am. J. Clin. Pathol. (1976) [Pubmed]
  6. Genomic analysis of Oenococcus oeni PSU-1 and its relevance to winemaking. Mills, D.A., Rawsthorne, H., Parker, C., Tamir, D., Makarova, K. FEMS Microbiol. Rev. (2005) [Pubmed]
  7. Glucose 6-phosphate dehydrogenase mutations causing enzyme deficiency in a model of the tertiary structure of the human enzyme. Naylor, C.E., Rowland, P., Basak, A.K., Gover, S., Mason, P.J., Bautista, J.M., Vulliamy, T.J., Luzzatto, L., Adams, M.J. Blood (1996) [Pubmed]
  8. Arg-425 of the citrate transporter CitP is responsible for high affinity binding of di- and tricarboxylates. Bandell, M., Lolkema, J.S. J. Biol. Chem. (2000) [Pubmed]
  9. D-Alanyl-D-lactate and D-alanyl-D-alanine synthesis by D-alanyl-D-alanine ligase from vancomycin-resistant Leuconostoc mesenteroides. Effects of a phenylalanine 261 to tyrosine mutation. Park, I.S., Walsh, C.T. J. Biol. Chem. (1997) [Pubmed]
  10. Membrane potential-generating transport of citrate and malate catalyzed by CitP of Leuconostoc mesenteroides. Marty-Teysset, C., Lolkema, J.S., Schmitt, P., Divies, C., Konings, W.N. J. Biol. Chem. (1995) [Pubmed]
  11. Iron-catalyzed oxidative modification of glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides. Structural and functional changes. Szweda, L.I., Stadtman, E.R. J. Biol. Chem. (1992) [Pubmed]
  12. Simultaneous analysis of NAD- and NADP-linked activities of dual nucleotide-specific dehydrogenases. Application to Leuconostoc mesenteroides glucose-6-phosphate dehydrogenase. Levy, H.R., Daouk, G.H. J. Biol. Chem. (1979) [Pubmed]
  13. Modification of glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides with the 2',3'-dialdehyde derivative of NADP+ (oNADP+). White, B.J., Levy, H.R. J. Biol. Chem. (1987) [Pubmed]
  14. Identification of essential arginine residues in glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides. Levy, H.R., Ingulli, J., Afolayan, A. J. Biol. Chem. (1977) [Pubmed]
  15. Inactivation of glucose-6-phosphate dehydrogenase by 4-hydroxy-2-nonenal. Selective modification of an active-site lysine. Szweda, L.I., Uchida, K., Tsai, L., Stadtman, E.R. J. Biol. Chem. (1993) [Pubmed]
  16. Cloning of the gene and amino acid sequence for glucose 6-phosphate dehydrogenase from Leuconostoc mesenteroides. Lee, W.T., Flynn, T.G., Lyons, C., Levy, H.R. J. Biol. Chem. (1991) [Pubmed]
  17. An active-site peptide containing the second essential carboxyl group of dextransucrase from Leuconostoc mesenteroides by chemical modifications. Funane, K., Shiraiwa, M., Hashimoto, K., Ichishima, E., Kobayashi, M. Biochemistry (1993) [Pubmed]
  18. Cloning and partial characterization of regulated promoters from Lactococcus lactis Tn917-lacZ integrants with the new promoter probe vector, pAK80. Israelsen, H., Madsen, S.M., Vrang, A., Hansen, E.B., Johansen, E. Appl. Environ. Microbiol. (1995) [Pubmed]
  19. Uniport of anionic citrate and proton consumption in citrate metabolism generates a proton motive force in Leuconostoc oenos. Ramos, A., Poolman, B., Santos, H., Lolkema, J.S., Konings, W.N. J. Bacteriol. (1994) [Pubmed]
  20. Transcriptional control of the citrate-inducible citMCDEFGRP operon, encoding genes involved in citrate fermentation in Leuconostoc paramesenteroides. Martín, M., Magni, C., López, P., de Mendoza, D. J. Bacteriol. (2000) [Pubmed]
  21. A novel putative transcription factor protein MYT2 that preferentially binds supercoiled DNA and induces DNA synthesis in quiescent cells. Shao, W., Lee, A.Y., Gulnik, S., Gustchina, E., Liu, Y.L., Kung, H., Erickson, J.W. FEBS Lett. (2000) [Pubmed]
  22. Human glucose-6-phosphate dehydrogenase: the crystal structure reveals a structural NADP(+) molecule and provides insights into enzyme deficiency. Au, S.W., Gover, S., Lam, V.M., Adams, M.J. Structure (2000) [Pubmed]
  23. Effect of Cibacron Blue F3GA on phosphoglycerate kinase of Lactobacillus plantarum and phosphoglycerate mutase of Leuconostoc dextranicum. Kawai, K., Eguchi, Y. J. Biochem. (1980) [Pubmed]
  24. Cloning and sequencing of a gene coding for a novel dextransucrase from Leuconostoc mesenteroides NRRL B-1299 synthesizing only alpha (1-6) and alpha (1-3) linkages. Monchois, V., Willemot, R.M., Remaud-Simeon, M., Croux, C., Monsan, P. Gene (1996) [Pubmed]
  25. Delineation of the roles of amino acids involved in the catalytic functions of Leuconostoc mesenteroides glucose 6-phosphate dehydrogenase. Vought, V., Ciccone, T., Davino, M.H., Fairbairn, L., Lin, Y., Cosgrove, M.S., Adams, M.J., Levy, H.R. Biochemistry (2000) [Pubmed]
  26. The catalytic mechanism of glucose 6-phosphate dehydrogenases: assignment and 1H NMR spectroscopy pH titration of the catalytic histidine residue in the 109 kDa Leuconostoc mesenteroides enzyme. Cosgrove, M.S., Loh, S.N., Ha, J.H., Levy, H.R. Biochemistry (2002) [Pubmed]
  27. Conserved repeat motifs and glucan binding by glucansucrases of oral streptococci and Leuconostoc mesenteroides. Shah, D.S., Joucla, G., Remaud-Simeon, M., Russell, R.R. J. Bacteriol. (2004) [Pubmed]
  28. Sequence analysis of the gene encoding alternansucrase, a sucrose glucosyltransferase from Leuconostoc mesenteroides NRRL B-1355. Argüello-Morales, M.A., Remaud-Simeon, M., Pizzut, S., Sarçabal, P., Willemot, R., Monsan, P. FEMS Microbiol. Lett. (2000) [Pubmed]
  29. Purification and properties of the extracellular dextransucrase from Leuconostoc mesenteroides NRRL B-1299. Kobayashi, M., Matsuda, K. J. Biochem. (1976) [Pubmed]
WikiGenes - Universities