The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

The ubiquitous transactivator Zfp-38 is upregulated during spermatogenesis with differential transcription.

We describe the complete nucleotide sequence of a full length cDNA clone encoding a new mouse zinc finger protein gene, Zfp-38 and localize it on chromosome 5 by the interspecific backcross analysis. The N-terminal domain of the Zfp-38 protein (64 kDa) contains 358 amino acids and the C-terminal domain of 197 residues encodes 7 zinc fingers. We also present evidence that Zfp-38 is a strong transcriptional activator. The transactivation domain was localized in the non finger region and a fusion protein containing 112 amino acid residues from this region of the Zfp-38 and the DNA binding domain of the yeast Gal 4 protein, very efficiently transactivated the expression of a reporter CAT plasmid, harboring the Gal4 target site. By in situ hybridization and northern blotting technique, the Zfp-38 transcript can be detected at a highly elevated level during spermatogenesis. Its expression accompanies the progression from pachytene spermatocytes to round spermatids. The undifferentiated spermatogonia or the haploid elongated spermatid and the spermatozoa do not show any detectable level of the transcript. Interestingly, other tissues express low levels of a slightly shorter transcript with a different 5' end as determined by RNase protection. The presence of both a transcriptional activating domain and 7 DNA binding zinc fingers, coupled with the cell type(s) specific expression pattern, suggests that Zfp-38 has the potential to regulate transcription during spermatogenesis.[1]

References

  1. The ubiquitous transactivator Zfp-38 is upregulated during spermatogenesis with differential transcription. Chowdhury, K., Goulding, M., Walther, C., Imai, K., Fickenscher, H. Mech. Dev. (1992) [Pubmed]
 
WikiGenes - Universities