The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Intercellular adhesion molecule-2 (ICAM-2) and Pseudomonas aeruginosa ocular infection.

In a previous study, ICAM-1-deficient knockout (KO) mice were able to recruit inflammatory cells into Pseudomonas aeruginosa-infected eyes and resolve the infection as well as wild-type (WT) mice. Based on this observation, it was hypothesized that ICAM-2 could serve as a surrogate receptor for leukocyte recruitment in lieu of ICAM-1. To test this hypothesis, ICAM-2 expression was first examined in both uninfected and P. aeruginosa-infected eyes (6 h postinfection) by immunohistochemistry and RT-PCR. Similar to ICAM-1, ICAM-2 was constitutively expressed on the vascular endothelium of the iris, ciliary body, and conjunctiva of uninfected eyes. Unlike ICAM-1, ICAM-2 was not expressed in the cornea nor upregulated following P. aeruginosa infection. The role of ICAM-2 in P. aeruginosa ocular infection was then addressed through a monoclonal antibody (MAb) blockade of ICAM-2 in infected ICAM-1 KO and WT mice. MAb blockade of ICAM-2 resulted in fewer infiltrating inflammatory cells (as ascertained by histopathology) in the anterior chamber of eyes of ICAM-1-KO and WT mice 24 h postinfection. However, a myeloperoxidase assay of infected corneas showed no statistical difference (P > 0.11) between the two groups in infiltrating PMN. Collectively, these data suggest that constitutively expressed ICAM-2 does play a role in recruiting inflammatory cells into the anterior chamber of the eye during P. aeruginosa infection. Furthermore, inflammatory cell recruitment into the P. aeruginosa-infected cornea appears to be mediated by an ICAM-independent pathway.[1]

References

 
WikiGenes - Universities