The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Ciliary Body

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Ciliary Body

  • In contrast, no NPY-immunoreactive fibers were observed in the iris or ciliary body of acutely sympathectomized rats, suggesting that NPY-immunoreactive neurons in the ciliary ganglion do not normally transport detectable levels of NPY to their terminals [1].
  • Moreover, the expression of experimental autoimmune uveitis in mice immunized with interphotoreceptor retinol binding protein was significantly suppressed if the animals were pretreated with peritoneal exudate cells pulsed with this Ag in the presence of iris and ciliary body supernatants.(ABSTRACT TRUNCATED AT 400 WORDS)[2]
  • Microphthalmia, cataracts, and chronic nongranulomatous inflammation involving the anterior and/or posterior segments of the eye were also found. gamma GT is detectable histochemically as early as 11.5 gestational days in the outer neuroectodermal layer and after birth is more abundant in the ciliary body than in the retinal pigment epithelium [3].
  • We also observed that activated NF-kappaB and phosphorylated MAPK are increased in the iris/ciliary body of DBA/2J mice, suggesting that both signaling pathways may be involved in IL-18 mediated pathogenesis of pigmentary glaucoma in the eyes of DBA/2J mice [4].
  • METHODS: A monoclonal antibody, 3C12, that reacts with the carboxyl-terminal part of ezrin was used in retrospective analysis of a population-based cohort of 167 consecutive choroidal and ciliary body melanomas in eyes enucleated from 1972 through 1981, with a median follow-up of 22 years [5].
 

High impact information on Ciliary Body

 

Chemical compound and disease context of Ciliary Body

 

Biological context of Ciliary Body

 

Anatomical context of Ciliary Body

 

Associations of Ciliary Body with chemical compounds

 

Gene context of Ciliary Body

 

Analytical, diagnostic and therapeutic context of Ciliary Body

References

  1. Target specificity of neuropeptide Y-immunoreactive cranial parasympathetic neurons. Leblanc, G.G., Landis, S.C. J. Neurosci. (1988) [Pubmed]
  2. Analysis of an in vitro-generated signal that induces systemic immune deviation similar to that elicited by antigen injected into the anterior chamber of the eye. Hara, Y., Caspi, R.R., Wiggert, B., Dorf, M., Streilein, J.W. J. Immunol. (1992) [Pubmed]
  3. Expression of the rasT24 oncogene in the ciliary body pigment epithelium and retinal pigment epithelium results in hyperplasia, adenoma, and adenocarcinoma. Chévez-Barrios, P., Schaffner, D.L., Barrios, R., Overbeek, P.A., Lebovitz, R.M., Lieberman, M.W. Am. J. Pathol. (1993) [Pubmed]
  4. Involvement of inflammation, degradation, and apoptosis in a mouse model of glaucoma. Zhou, X., Li, F., Kong, L., Tomita, H., Li, C., Cao, W. J. Biol. Chem. (2005) [Pubmed]
  5. Ezrin as a prognostic indicator and its relationship to tumor characteristics in uveal malignant melanoma. Mäkitie, T., Carpén, O., Vaheri, A., Kivelä, T. Invest. Ophthalmol. Vis. Sci. (2001) [Pubmed]
  6. Activin A and follistatin expression in developing targets of ciliary ganglion neurons suggests a role in regulating neurotransmitter phenotype. Darland, D.C., Link, B.A., Nishi, R. Neuron (1995) [Pubmed]
  7. A release mechanism for stored ATP in ocular ciliary epithelial cells. Mitchell, C.H., Carré, D.A., McGlinn, A.M., Stone, R.A., Civan, M.M. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  8. Vacuolar H+-ATPase in ocular ciliary epithelium. Wax, M.B., Saito, I., Tenkova, T., Krupin, T., Becker, B., Nelson, N., Brown, D., Gluck, S.L. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  9. Immunolocalization of the mercurial-insensitive water channel and glycerol intrinsic protein in epithelial cell plasma membranes. Frigeri, A., Gropper, M.A., Turck, C.W., Verkman, A.S. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  10. Identification of a novel adult-onset primary open-angle glaucoma (POAG) gene on 5q22.1. Monemi, S., Spaeth, G., DaSilva, A., Popinchalk, S., Ilitchev, E., Liebmann, J., Ritch, R., Héon, E., Crick, R.P., Child, A., Sarfarazi, M. Hum. Mol. Genet. (2005) [Pubmed]
  11. Potential sites of action of TNPA: a dopamine-2 receptor agonist. Chu, E., Chu, T.C., Potter, D.E. Exp. Eye Res. (1999) [Pubmed]
  12. Photobiology of ocular melanocytes and melanoma. Hu, D.N. Photochem. Photobiol. (2005) [Pubmed]
  13. Ocular growth in newborn rabbit eyes implanted with a poly(methyl methacrylate) or silicone intraocular lens. Kugelberg, U., Zetterström, C., Lundgren, B., Syrén-Nordqvist, S. Journal of cataract and refractive surgery. (1997) [Pubmed]
  14. Efficacy of latanoprost in patients with chronic angle-closure glaucoma and no visible ciliary-body face: a preliminary study. Kook, M.S., Cho, H.S., Yang, S.J., Kim, S., Chung, J. Journal of ocular pharmacology and therapeutics : the official journal of the Association for Ocular Pharmacology and Therapeutics. (2005) [Pubmed]
  15. Galactose-containing glycoconjugates of the ciliary body and lens in capsular glaucoma: a lectin histochemical study. Hietanen, J., Tarkkanen, A., Kivelä, T. Graefes Arch. Clin. Exp. Ophthalmol. (1994) [Pubmed]
  16. Roles of cell-adhesion molecules nectin 1 and nectin 3 in ciliary body development. Inagaki, M., Irie, K., Ishizaki, H., Tanaka-Okamoto, M., Morimoto, K., Inoue, E., Ohtsuka, T., Miyoshi, J., Takai, Y. Development (2005) [Pubmed]
  17. Angiotensin binding sites in rabbit anterior uvea and human ciliary epithelial cells. Lin, C., Stone, R.A., Wax, M.B. Invest. Ophthalmol. Vis. Sci. (1990) [Pubmed]
  18. Identification, expression and chromosome localization of a human gene encoding a novel protein with similarity to the pilB family of transcriptional factors (pilin) and to bacterial peptide methionine sulfoxide reductases. Huang, W., Escribano, J., Sarfarazi, M., Coca-Prados, M. Gene (1999) [Pubmed]
  19. Retention of p53val135 wild-type function in transgenic mice. Schaffner, D.L., Chévez-Barrios, P., Huang, S.L., Barrios, R., Dickey, B.F., Shaker, M.R., Rajagopalan, S., Habib, G.M., Lebovitz, R.M., Lieberman, M.W. Lab. Invest. (1996) [Pubmed]
  20. Melatonin receptor mRNA and protein expression in Xenopus laevis nonpigmented ciliary epithelial cells. Wiechmann, A.F., Wirsig-Wiechmann, C.R. Exp. Eye Res. (2001) [Pubmed]
  21. Optimedin: a novel olfactomedin-related protein that interacts with myocilin. Torrado, M., Trivedi, R., Zinovieva, R., Karavanova, I., Tomarev, S.I. Hum. Mol. Genet. (2002) [Pubmed]
  22. Characterization of the expression of DMPK and SIX5 in the human eye and implications for pathogenesis in myotonic dystrophy. Winchester, C.L., Ferrier, R.K., Sermoni, A., Clark, B.J., Johnson, K.J. Hum. Mol. Genet. (1999) [Pubmed]
  23. Transdifferentiation of the retina into pigmented cells in ocular retardation mice defines a new function of the homeodomain gene Chx10. Rowan, S., Chen, C.M., Young, T.L., Fisher, D.E., Cepko, C.L. Development (2004) [Pubmed]
  24. Regulation of aquaporin-4 water channels by phorbol ester-dependent protein phosphorylation. Han, Z., Wax, M.B., Patil, R.V. J. Biol. Chem. (1998) [Pubmed]
  25. A novel glutathione peroxidase in bovine eye. Sequence analysis, mRNA level, and translation. Singh, A.K., Shichi, H. J. Biol. Chem. (1998) [Pubmed]
  26. Transport of glucose across the blood-tissue barriers. Takata, K., Hirano, H., Kasahara, M. Int. Rev. Cytol. (1997) [Pubmed]
  27. Levels of alpha- and gamma-tocopherol in human eyes: evaluation of the possible role of IRBP in intraocular alpha-tocopherol transport. Alvarez, R.A., Liou, G.I., Fong, S.L., Bridges, C.D. Am. J. Clin. Nutr. (1987) [Pubmed]
  28. Analysis of expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases in human ciliary body after latanoprost. Oh, D.J., Martin, J.L., Williams, A.J., Peck, R.E., Pokorny, C., Russell, P., Birk, D.E., Rhee, D.J. Invest. Ophthalmol. Vis. Sci. (2006) [Pubmed]
  29. Site of ocular hydrolysis of a prodrug, dipivefrin, and a comparison of its ocular metabolism with that of the parent compound, epinephrine. Anderson, J.A., Davis, W.L., Wei, C.P. Invest. Ophthalmol. Vis. Sci. (1980) [Pubmed]
  30. The Msh-like homeobox genes define domains in the developing vertebrate eye. Monaghan, A.P., Davidson, D.R., Sime, C., Graham, E., Baldock, R., Bhattacharya, S.S., Hill, R.E. Development (1991) [Pubmed]
  31. Expression of cyclooxygenase-1 and -2 in normal and glaucomatous human eyes. Maihöfner, C., Schlötzer-Schrehardt, U., Gühring, H., Zeilhofer, H.U., Naumann, G.O., Pahl, A., Mardin, C., Tamm, E.R., Brune, K. Invest. Ophthalmol. Vis. Sci. (2001) [Pubmed]
  32. Participation of pigment epithelium of iris and ciliary body in ocular immune privilege. 2. Generation of TGF-beta-producing regulatory T cells. Yoshida, M., Kezuka, T., Streilein, J.W. Invest. Ophthalmol. Vis. Sci. (2000) [Pubmed]
  33. Novel human ocular glutathione S-transferases with high activity toward 4-hydroxynonenal. Singhal, S.S., Awasthi, S., Srivastava, S.K., Zimniak, P., Ansari, N.H., Awasthi, Y.C. Invest. Ophthalmol. Vis. Sci. (1995) [Pubmed]
  34. Connexin distribution in the rabbit and rat ciliary body. A case for heterotypic epithelial gap junctions. Wolosin, J.M., Schütte, M., Chen, S. Invest. Ophthalmol. Vis. Sci. (1997) [Pubmed]
  35. Purification and properties of anionic glutathione S-transferase from bovine ciliary body. Shichi, H., O'Meara, P.D. Biochem. J. (1986) [Pubmed]
  36. Ultrastructural changes in rabbit ciliary body after extraocular mitomycin C. Heaps, R.S., Nordlund, J.R., Gonzalez-Fernandez, F., Redick, J.A., Conway, B.P. Invest. Ophthalmol. Vis. Sci. (1998) [Pubmed]
 
WikiGenes - Universities