GATA-4 regulates cardiac morphogenesis through transactivation of the N-cadherin gene.
Cardia bifida is known to occur in animal models lacking the cardiogenic transcriptional factor GATA-4. The downstream target genes responsible for this cardiac deformity remain unknown, however. Treatment with small interfering RNAs (siRNA) specifically targeting GATA-4 into cardiac mesodermal cells led to the development of cardia bifida in chick embryos. RT-PCR using mRNAs extracted from cardiac tubes revealed that the GATA-4-specific siRNA selectively suppresses expression of N-cadherin mRNA, one of the genes essential for the single heart formation, without affecting other cardiac marker mRNAs. Analysis of the N-cadherin gene promoter activity using a luciferase reporter gene system and electrophoretic mobility shift assays revealed that GATA-4 binds directly to the N-cadherin gene promoter region, thereby transactivating its expression. We therefore concluded that the cardia bifida observed in the GATA-4- deleted model is caused by the transcriptional down-regulation of N-cadherin expression.[1]References
- GATA-4 regulates cardiac morphogenesis through transactivation of the N-cadherin gene. Zhang, H., Toyofuku, T., Kamei, J., Hori, M. Biochem. Biophys. Res. Commun. (2003) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg