The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Attenuation regulation of amino acid biosynthetic operons in proteobacteria: comparative genomics analysis.

Candidate attenuators were identified that regulate operons responsible for biosynthesis of branched amino acids, histidine, threonine, tryptophan, and phenylalanine in gamma- and alpha-proteobacteria, and in some cases in low-GC Gram-positive bacteria, Thermotogales and Bacteroidetes/Chlorobi. This allowed us not only to describe the evolutionary dynamics of regulation by attenuation of transcription, but also to annotate a number of hypothetical genes. In particular, orthologs of ygeA of Escherichia coli were assigned the branched chain amino acid racemase function. Three new families of histidine transporters were predicted, orthologs of yuiF and yvsH of Bacillus subtilis, and lysQ of Lactococcus lactis. In Pasteurellales, the single bifunctional aspartate kinase/ homoserine dehydrogenase gene thrA was predicted to be regulated not only by threonine and isoleucine, as in E. coli, but also by methionine. In alpha-proteobacteria, the single acetolactate synthase operon ilvIH was predicted to be regulated by branched amino acids-dependent attenuators. Histidine biosynthetic operons his were predicted to be regulated by histidine-dependent attenuators in Bacillus cereus and Clostridium difficile, and by histidine T-boxes in L. lactis and Streptococcus mutans.[1]

References

  1. Attenuation regulation of amino acid biosynthetic operons in proteobacteria: comparative genomics analysis. Vitreschak, A.G., Lyubetskaya, E.V., Shirshin, M.A., Gelfand, M.S., Lyubetsky, V.A. FEMS Microbiol. Lett. (2004) [Pubmed]
 
WikiGenes - Universities