The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Chlorobi


High impact information on Chlorobi

  • This autobiographical chapter summarizes the author's work with a defined mineral medium for fastidious sulfide-oxidizing phototrophic purple and green sulfur bacteria that were known already from Winogradsky's and Lauterborn's descriptions [5].
  • Green sulfur bacteria are anaerobes that require light for growth by the oxidation of sulfur compounds to reduce CO2 to organic carbon, and are capable of photosynthetic growth at extremely low light intensities [6].
  • The photosynthetic reaction center (RC) of green sulfur bacteria contains two [4Fe-4S] clusters named F(A) and F(B), by analogy with photosystem I (PS I) [7].
  • From our data, there is no evidence for involvement of menaquinone in charge separation in the reaction center of green sulfur bacteria [8].
  • Stable carbon isotope fractionation values of farnesol indicated an autotrophic growth mode of the green sulfur bacteria [9].

Chemical compound and disease context of Chlorobi

  • Maximum light-dependent H(14)CO(3)(-) fixation in the chemocline in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea suggested that there was anaerobic autotrophic growth of the green sulfur bacteria [10].
  • Carbon dioxide is fixed largely by the reductive tricarboxylic acid (RTCA) cycle in green sulfur bacteria [11].
  • The effects of epimerization at the 3(1)-position of bacteriochlorophylls c on their aggregation in chlorosomes of green sulfur bacteria. Control of the ratio of 3(1) epimers by light intensity [12].
  • The dsrA gene, encoding the alpha subunit of 'reverse' siroheme sulfite reductase, is also present in two species of green sulfur bacteria pointing to an important and universal role of this enzyme and probably other proteins encoded in the dsr locus in the oxidation of stored sulfur by phototrophic bacteria [13].
  • Our results provide a model system for studying the redox-dependent antenna quenching in green sulfur bacteria because the antennas in these bacteria inherently exhibit a sensitivity to O(2) similar to the quinone-supplemented cells of Cfx. aurantiacus [14].

Gene context of Chlorobi


  1. Bacteriochlorophyll cs, a new bacteriochlorophyll from Chloroflexus aurantiacus. Gloe, A., Risch, N. Arch. Microbiol. (1978) [Pubmed]
  2. Desulfuromonas acetoxidans gen. nov. and sp. nov., a new anaerobic, sulfur-reducing, acetate-oxidizing bacterium. Pfennig, N., Biebl, H. Arch. Microbiol. (1976) [Pubmed]
  3. Susceptibility of various purple and green sulfur bacteria to different antimicrobial agents. Nogales, B., Guerrero, R., Esteve, I. FEMS Microbiol. Lett. (1994) [Pubmed]
  4. Phototrophic bacteria (an incoherent group of prokaryotes). A taxonomic versus phylogenetic survey. Trüper, H.G. Microbiologia (1987) [Pubmed]
  5. Reflections of a microbiologist, or how to learn from the microbes. Pfennig, N. Annu. Rev. Microbiol. (1993) [Pubmed]
  6. An obligately photosynthetic bacterial anaerobe from a deep-sea hydrothermal vent. Beatty, J.T., Overmann, J., Lince, M.T., Manske, A.K., Lang, A.S., Blankenship, R.E., Van Dover, C.L., Martinson, T.A., Plumley, F.G. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  7. The bound electron acceptors in green sulfur bacteria: resolution of the g-tensor for the F(X) iron-sulfur cluster in Chlorobium tepidum. Vassiliev, I.R., Ronan, M.T., Hauska, G., Golbeck, J.H. Biophys. J. (2000) [Pubmed]
  8. Electron transfer kinetics in purified reaction centers from the green sulfur bacterium Chlorobium tepidum studied by multiple-flash excitation. Kusumoto, N., Sétif, P., Brettel, K., Seo, D., Sakurai, H. Biochemistry (1999) [Pubmed]
  9. Physiology and phylogeny of green sulfur bacteria forming a monospecific phototrophic assemblage at a depth of 100 meters in the Black Sea. Manske, A.K., Glaeser, J., Kuypers, M.M., Overmann, J. Appl. Environ. Microbiol. (2005) [Pubmed]
  10. Characterization and in situ carbon metabolism of phototrophic consortia. Glaeser, J., Overmann, J. Appl. Environ. Microbiol. (2003) [Pubmed]
  11. The reductive tricarboxylic acid cycle of carbon dioxide assimilation: initial studies and purification of ATP-citrate lyase from the green sulfur bacterium Chlorobium tepidum. Wahlund, T.M., Tabita, F.R. J. Bacteriol. (1997) [Pubmed]
  12. The effects of epimerization at the 3(1)-position of bacteriochlorophylls c on their aggregation in chlorosomes of green sulfur bacteria. Control of the ratio of 3(1) epimers by light intensity. Ishii, T., Kimura, M., Yamamoto, T., Kirihata, M., Uehara, K. Photochem. Photobiol. (2000) [Pubmed]
  13. Genes involved in hydrogen and sulfur metabolism in phototrophic sulfur bacteria. Dahl, C., Rákhely, G., Pott-Sperling, A.S., Fodor, B., Takács, M., Tóth, A., Kraeling, M., Gy"orfi, K., Kovács, A., Tusz, J., Kovács, K.L. FEMS Microbiol. Lett. (1999) [Pubmed]
  14. Exogenous quinones inhibit photosynthetic electron transfer in Chloroflexus aurantiacus by specific quenching of the excited bacteriochlorophyll c antenna. Frigaard, N., Tokita, S., Matsuura, K. Biochim. Biophys. Acta (1999) [Pubmed]
  15. Diversity of anoxygenic phototrophic sulfur bacteria in the microbial mats of the Ebro Delta: a combined morphological and molecular approach. Martínez-Alonso, M., Van Bleijswijk, J., Gaju, N., Muyzer, G. FEMS Microbiol. Ecol. (2005) [Pubmed]
  16. ;Evolution of Photosynthesis' (1970), re-examined thirty years later. Olson, J.M. Photosyn. Res. (2001) [Pubmed]
  17. ;Every dogma has its day': a personal look at carbon metabolism in photosynthetic bacteria. Ormerod, J. Photosyn. Res. (2003) [Pubmed]
WikiGenes - Universities