The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Screening the yeast deletant mutant collection for hypersensitivity and hyper-resistance to sorbate, a weak organic acid food preservative.

Certain yeasts cause large-scale spoilage of preserved food materials, partly as a result of their ability to grow in the presence of the preservatives allowed in food and beverage preservation. This study used robotic methods to screen the collection of Saccharomyces cerevisiae gene deletion mutants for both increased sensitivity and increased resistance to sorbic acid, one of the most widely-used weak organic acid preservatives. In this way it sought to identify the non-essential, non-redundant activities that influence this resistance, activities that might be the potential targets of new preservation strategies. 237 mutants were identified as incapable of growth at pH 4.5 in presence of 2 mM sorbic acid, while 34 mutants exhibit even higher sorbate resistance than the wild-type parental strain. A number of oxidative stress-sensitive mutants, also mitochondrial mutants, are sorbate-sensitive. This appears to reflect the importance of sustaining a reducing intracellular environment (high reduced glutathione levels and NADH/NAD and NADPH/NADP ratios). Sorbate resistance is also very severely compromised in mutants lacking an acidified vacuole, in vacuolar protein sorting (vps) mutants, in mutants defective in ergosterol biosynthesis (erg mutants) and with several defects in actin and microtubule organization. Sorbate resistance is, however, elevated with the loss of the Yap5 transcription factor; with single losses of two B-type cyclins (Clb3p, Clb5p); and with loss of a plasma membrane calcium channel activated by endoplasmic reticulum stress (Cch1p/Mid1p).[1]

References

  1. Screening the yeast deletant mutant collection for hypersensitivity and hyper-resistance to sorbate, a weak organic acid food preservative. Mollapour, M., Fong, D., Balakrishnan, K., Harris, N., Thompson, S., Schüller, C., Kuchler, K., Piper, P.W. Yeast (2004) [Pubmed]
 
WikiGenes - Universities