The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Unique biosynthesis of dehydroquinic acid?

A search of the genomic sequences of the thermophilic microorganisms Aquifex aeolicus, Archaeoglobus fulgidus, Methanobacterium thermoautotrophicum, and Methanococcus jannaschii for the first seven enzymes (aroG, B, D, E, K, A, and C ) involved in the shikimic acid biosynthetic pathway reveal two key enzymes are missing. The first enzyme in the pathway, 3-deoxy-d-arabino-heptulosonic acid 7-phosphate synthase (aroG) and the second enzyme in the pathway, 5-dehydroquinic acid synthase (aroB) are "missing." The remaining five genes for the shikimate pathway in these organism are present and are similar to the corresponding Escherichia coli genes. The genomic sequences of the thermophiles Pyrococcus abyssi and Thermotoga maritima contain the aroG and aroB genes. Several fungi such as Aspergillus fumigatus, Aspergillus nidulans, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Pneumocystis carinii f. sp. carinii, and Neurospora crassa contain the gene aroM, a pentafunctional enzyme whose overall activity is equivalent to the combined catalytic activities of proteins expressed by aroB, D, E, K, and A genes. Two of these fungi also lack an aroG gene. A discussion of potential reasons for these missing enzymes is presented.[1]

References

  1. Unique biosynthesis of dehydroquinic acid? Woodard, R.W. Bioorg. Chem. (2004) [Pubmed]
 
WikiGenes - Universities