The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Clinical implications of the immunomodulatory effects of macrolides.

Macrolide antibiotics are known for their efficacy in treating acute airway infections, but just as importantly, they are also effective anti-inflammatory agents. Their anti-inflammatory properties have been studied most thoroughly in chronic inflammatory airway diseases, particularly diffuse panbronchiolitis (DPB). Erythromycin, azithromycin, clarithromycin, and roxithromycin inhibit chemotaxis and infiltration of neutrophils into the airway and, subsequently, decrease mucus secretion. Mucus formation, a significant cause of morbidity and mortality in patients with chronic airway inflammation, is directly inhibited by macrolides and suppressed by decreased inflammation in the airway. The mechanisms of action for the anti-inflammatory properties of the macrolides are still being investigated, but they are clearly multifactorial. Macrolides inhibit the production of many proinflammatory cytokines, such as interleukin (IL)-1, IL-6, IL-8, and tumor necrosis factor-alpha, perhaps by suppressing the transcription factor nuclear factor-kappaB or activator protein-1. Inhibition of cytokine production has been seen in vitro and also in bronchoalveolar lavage fluid, which contains less IL-8 and fewer neutrophils after treatment with macrolides. Macrolides also inhibit formation of leukotriene B4, which attracts neutrophils, and inhibit the release of superoxide anion by neutrophils that may be present in the airway. An important aspect of inflammation is extravasation of neutrophils into the tissues. Macrolides block formation of adhesion molecules necessary for neutrophil migration. Together, these anti-inflammatory effects result in improved pulmonary functions and fewer airway infections. In patients with DPB, the anti-inflammatory effects lead to a significant increase in survival. Further work is needed to characterize the clinical benefits of macrolides in patients with other chronic inflammatory airway diseases.[1]

References

  1. Clinical implications of the immunomodulatory effects of macrolides. Tamaoki, J., Kadota, J., Takizawa, H. Am. J. Med. (2004) [Pubmed]
 
WikiGenes - Universities