The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Cisplatin-induced genes as potential markers for thyroid cancer.

Despite the uncontested role of p53 in cycle arrest/cell death after cisplatin treatment, to date the question whether wild-type p53 confers a resistant or sensitive status on the cell is still a matter of debate. Isogenic and isophenotypic human thyroid papillary carcinoma cell line variants for p53 differently expressed cycle genes after cisplatin treatment. Seven genes (CDC6-related protein, CCNC, GAS1, TFDP2, MAPK10/JNK3, WEE1, RPA1) selected after expression on an Atlas human cell cycle array were analyzed by quantitative real-time PCR. While cisplatin treatment increased their expression in p53 wild-type cells it decreased it in cells with inactivated p53 and had no or less effect on cells with mutated p53. These results show that in a well-defined system, different alterations of p53 can lead to a different regulation of genes and hence to either resistance or sensitivity to cisplatin. Moreover for the first time, MAPK10/JNK3 was identified in human thyroid cells and tissue. Four of the genes (CDC6-related protein, CCNC, GAS1 and TFDP2) were decreased in human papillary carcinoma tissues. Relevance of these genes (especially a decrease in GAS1 in thyroid papillary carcinoma) in various malignant pathologies has already been shown. These genes may be explored as new markers in advanced thyroid cancer such as metastatic and anaplastic forms displaying p53 alterations.[1]


  1. Cisplatin-induced genes as potential markers for thyroid cancer. Lapouge, G., Millon, R., Muller, D., Abecassis, J., Eber, M., Bergerat, J.P., Klein-Soyer, C. Cell. Mol. Life Sci. (2005) [Pubmed]
WikiGenes - Universities