The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

C8orf4  -  chromosome 8 open reading frame 4

Homo sapiens

Synonyms: TC-1, TC1, Thyroid cancer protein 1, Uncharacterized protein C8orf4, hTC-1
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of C8orf4

 

Psychiatry related information on C8orf4

  • The differences seen between these and other published results may be related to differences in radiation doses to the thyroid, latency period between time of radiation exposure and development of clinically apparent thyroid cancer, and ethnic background of the study populations [5].
  • Age at which smoking commenced, duration of smoking, number of cigarettes smoked per day, pack-years of smoking and alcohol consumption were not associated with altered thyroid cancer risk [6].
  • Our findings suggest that thyroid cancer prevention via dietary modification of soy and/or phytoestrogen intake in other forms may be possible but warrants further research at this time [7].
  • These findings suggest that LCs may play an important role in the immunologic defense mechanisms of the host against the tumor only in the papillary type of thyroid cancer [8].
  • CONCLUSIONS: These results provide some initial support for the hypothesis that physical activity may reduce risk of thyroid cancer [9].
 

High impact information on C8orf4

 

Chemical compound and disease context of C8orf4

 

Biological context of C8orf4

 

Anatomical context of C8orf4

 

Associations of C8orf4 with chemical compounds

  • We show that the protein can be phosphorylated by cyclic AMP-dependent protein kinase and protein kinase C, and the activity of both of these kinases is up-regulated when cells are stably transfected with TC-1 [21].
  • BACKGROUND: To detect recurrent disease in patients who have had differentiated thyroid cancer, periodic withdrawal of thyroid hormone therapy may be required to raise serum thyrotropin concentrations to stimulate thyroid tissue so that radioiodine (iodine-131) scanning can be performed [12].
  • Thyroid hormone treatment had no effect on the rate of thyroid cancer [25].
  • [18F]Fluorodeoxyglucose PET is also useful in some endocrine tumors, particularly in recurrent or metastatic thyroid cancer where the degree of accumulation of the radionuclide has prognostic value [26].
  • METHODS: The Swedish Cancer Registry and the Uppsala-Orebro Regional Cancer Registry were used to identify persons with papillary or follicular thyroid cancer diagnosed from January 1, 1980, through December 31, 1992, among residents of the Uppsala Health Care Region [27].
 

Physical interactions of C8orf4

 

Regulatory relationships of C8orf4

  • TC1 (C8orf4) enhances the Wnt/beta-catenin pathway by relieving antagonistic activity of Chibby [29].
  • These analyses highlighted C8orf4 as induced by TGF beta in colon cells [2].
  • PTEN expression is reduced in a subset of sporadic thyroid carcinomas: evidence that PTEN-growth suppressing activity in thyroid cancer cells mediated by p27kip1 [30].
  • Because thyroid cancer cells express functional TSH receptors (TSHR), TSHR-mRNA in peripheral blood might serve as a tissue-/cancer-specific marker [31].
  • We hypothesized that signaling via the epidermal growth factor receptor (EGFR) stimulates thyroid cancer cell invasion by altering the expression and cleavage of matrix metalloproteinases (MMPs) [32].
 

Other interactions of C8orf4

 

Analytical, diagnostic and therapeutic context of C8orf4

References

  1. Multiple interacting oncogenes on the 8p11-p12 amplicon in human breast cancer. Yang, Z.Q., Streicher, K.L., Ray, M.E., Abrams, J., Ethier, S.P. Cancer Res. (2006) [Pubmed]
  2. C8orf4 is a transforming growth factor B induced transcript downregulated in metastatic colon cancer. Friedman, J.B., Brunschwig, E.B., Platzer, P., Wilson, K., Markowitz, S.D. Int. J. Cancer (2004) [Pubmed]
  3. Cloning of TC-1 (C8orf4), a novel gene found to be overexpressed in thyroid cancer. Chua, E.L., Young, L., Wu, W.M., Turtle, J.R., Dong, Q. Genomics (2000) [Pubmed]
  4. Molecular analysis of the sodium/iodide symporter: impact on thyroid and extrathyroid pathophysiology. De La Vieja, A., Dohan, O., Levy, O., Carrasco, N. Physiol. Rev. (2000) [Pubmed]
  5. Ret/PTC activation in benign and malignant thyroid tumors arising in a population exposed to low-dose external-beam irradiation in childhood. Sadetzki, S., Calderon-Margalit, R., Modan, B., Srivastava, S., Tuttle, R.M. J. Clin. Endocrinol. Metab. (2004) [Pubmed]
  6. Risk factors for thyroid cancer: a prospective cohort study. Navarro Silvera, S.A., Miller, A.B., Rohan, T.E. Int. J. Cancer (2005) [Pubmed]
  7. Phytoestrogens and thyroid cancer risk: the San Francisco Bay Area thyroid cancer study. Horn-Ross, P.L., Hoggatt, K.J., Lee, M.M. Cancer Epidemiol. Biomarkers Prev. (2002) [Pubmed]
  8. Dendritic/Langerhans cells and prognosis in patients with papillary thyroid carcinomas. Immunocytochemical study of 106 thyroid neoplasms correlated to follow-up data. Schröder, S., Schwarz, W., Rehpenning, W., Löning, T., Böcker, W. Am. J. Clin. Pathol. (1988) [Pubmed]
  9. Recreational physical activity and risk of papillary thyroid cancer (United States). Rossing, M.A., Remler, R., Voigt, L.F., Wicklund, K.G., Daling, J.R. Cancer Causes Control (2001) [Pubmed]
  10. Perspective: National Cancer Institute summary report about estimated exposures and thyroid doses received from iodine 131 in fallout after Nevada atmospheric nuclear bomb tests. Hundahl, S.A. CA: a cancer journal for clinicians. (1998) [Pubmed]
  11. Epidemiology of thyroid cancer. Schottenfeld, D., Gershman, S.T. CA: a cancer journal for clinicians. (1978) [Pubmed]
  12. Comparison of administration of recombinant human thyrotropin with withdrawal of thyroid hormone for radioactive iodine scanning in patients with thyroid carcinoma. Ladenson, P.W., Braverman, L.E., Mazzaferri, E.L., Brucker-Davis, F., Cooper, D.S., Garber, J.R., Wondisford, F.E., Davies, T.F., DeGroot, L.J., Daniels, G.H., Ross, D.S., Weintraub, B.D. N. Engl. J. Med. (1997) [Pubmed]
  13. Thyroid diseases after treatment of Hodgkin's disease. Hancock, S.L., Cox, R.S., McDougall, I.R. N. Engl. J. Med. (1991) [Pubmed]
  14. The molecular biology of Laron dwarfism and medullary thyroid cancer. Jackson, C.E., Norum, R.A. N. Engl. J. Med. (1989) [Pubmed]
  15. Leukaemia incidence after iodine-131 exposure. Hall, P., Boice, J.D., Berg, G., Bjelkengren, G., Ericsson, U.B., Hallquist, A., Lidberg, M., Lundell, G., Mattsson, A., Tennvall, J. Lancet (1992) [Pubmed]
  16. The clinical and screening age-at-onset distribution for the MEN-2 syndrome. Easton, D.F., Ponder, M.A., Cummings, T., Gagel, R.F., Hansen, H.H., Reichlin, S., Tashjian, A.H., Telenius-Berg, M., Ponder, B.A. Am. J. Hum. Genet. (1989) [Pubmed]
  17. Effects of vinblastine and 5-fluorouracil on human glioma and thyroid cancer cell monolayers and spheroids. Nederman, T. Cancer Res. (1984) [Pubmed]
  18. Fasting blood glucose and cancer risk in a cohort of more than 140,000 adults in Austria. Rapp, K., Schroeder, J., Klenk, J., Ulmer, H., Concin, H., Diem, G., Oberaigner, W., Weiland, S.K. Diabetologia (2006) [Pubmed]
  19. Radiofrequency ablation and percutaneous ethanol injection treatment for recurrent local and distant well-differentiated thyroid carcinoma. Monchik, J.M., Donatini, G., Iannuccilli, J., Dupuy, D.E. Ann. Surg. (2006) [Pubmed]
  20. Axial and appendicular bone mineral density in patients with long-term deficiency or excess of calcitonin. Hurley, D.L., Tiegs, R.D., Wahner, H.W., Heath, H. N. Engl. J. Med. (1987) [Pubmed]
  21. TC-1 is a novel tumorigenic and natively disordered protein associated with thyroid cancer. Sunde, M., McGrath, K.C., Young, L., Matthews, J.M., Chua, E.L., Mackay, J.P., Death, A.K. Cancer Res. (2004) [Pubmed]
  22. Thyroid cancer: a lethal endocrine neoplasm. Robbins, J., Merino, M.J., Boice, J.D., Ron, E., Ain, K.B., Alexander, H.R., Norton, J.A., Reynolds, J. Ann. Intern. Med. (1991) [Pubmed]
  23. Low incidence of second neoplasms among children diagnosed with acute lymphoblastic leukemia after 1983. Bhatia, S., Sather, H.N., Pabustan, O.B., Trigg, M.E., Gaynon, P.S., Robison, L.L. Blood (2002) [Pubmed]
  24. Salivary gland protection by amifostine in high-dose radioiodine treatment: results of a double-blind placebo-controlled study. Bohuslavizki, K.H., Klutmann, S., Brenner, W., Mester, J., Henze, E., Clausen, M. J. Clin. Oncol. (1998) [Pubmed]
  25. Recurrence of thyroid nodules after surgical removal in patients irradiated in childhood for benign conditions. Fogelfeld, L., Wiviott, M.B., Shore-Freedman, E., Blend, M., Bekerman, C., Pinsky, S., Schneider, A.B. N. Engl. J. Med. (1989) [Pubmed]
  26. Functional imaging of endocrine tumors: role of positron emission tomography. Pacak, K., Eisenhofer, G., Goldstein, D.S. Endocr. Rev. (2004) [Pubmed]
  27. Medical diagnostic x rays and thyroid cancer. Inskip, P.D., Ekbom, A., Galanti, M.R., Grimelius, L., Boice, J.D. J. Natl. Cancer Inst. (1995) [Pubmed]
  28. Increased expression of AP2 and Sp1 transcription factors in human thyroid tumors: a role in NIS expression regulation? Chiefari, E., Brunetti, A., Arturi, F., Bidart, J.M., Russo, D., Schlumberger, M., Filetti, S. BMC Cancer (2002) [Pubmed]
  29. TC1 (C8orf4) enhances the Wnt/beta-catenin pathway by relieving antagonistic activity of Chibby. Jung, Y., Bang, S., Choi, K., Kim, E., Kim, Y., Kim, J., Park, J., Koo, H., Moon, R.T., Song, K., Lee, I. Cancer Res. (2006) [Pubmed]
  30. PTEN expression is reduced in a subset of sporadic thyroid carcinomas: evidence that PTEN-growth suppressing activity in thyroid cancer cells mediated by p27kip1. Bruni, P., Boccia, A., Baldassarre, G., Trapasso, F., Santoro, M., Chiappetta, G., Fusco, A., Viglietto, G. Oncogene (2000) [Pubmed]
  31. Detection of thyrotropin-receptor messenger ribonucleic acid (mRNA) and thyroglobulin mRNA transcripts in peripheral blood of patients with thyroid disease: sensitive and specific markers for thyroid cancer. Chinnappa, P., Taguba, L., Arciaga, R., Faiman, C., Siperstein, A., Mehta, A.E., Reddy, S.K., Nasr, C., Gupta, M.K. J. Clin. Endocrinol. Metab. (2004) [Pubmed]
  32. Differentiated thyroid cancer cell invasion is regulated through epidermal growth factor receptor-dependent activation of matrix metalloproteinase (MMP)-2/gelatinase A. Yeh, M.W., Rougier, J.P., Park, J.W., Duh, Q.Y., Wong, M., Werb, Z., Clark, O.H. Endocr. Relat. Cancer (2006) [Pubmed]
  33. BRAF mutation in papillary thyroid carcinoma. Cohen, Y., Xing, M., Mambo, E., Guo, Z., Wu, G., Trink, B., Beller, U., Westra, W.H., Ladenson, P.W., Sidransky, D. J. Natl. Cancer Inst. (2003) [Pubmed]
  34. Transient ectopic expression of PTEN in thyroid cancer cell lines induces cell cycle arrest and cell type-dependent cell death. Weng, L.P., Gimm, O., Kum, J.B., Smith, W.M., Zhou, X.P., Wynford-Thomas, D., Leone, G., Eng, C. Hum. Mol. Genet. (2001) [Pubmed]
  35. Thyroid cancer resistance to chemotherapeutic drugs via autocrine production of interleukin-4 and interleukin-10. Stassi, G., Todaro, M., Zerilli, M., Ricci-Vitiani, L., Di Liberto, D., Patti, M., Florena, A., Di Gaudio, F., Di Gesù, G., De Maria, R. Cancer Res. (2003) [Pubmed]
  36. Autocrine production of interleukin-4 and interleukin-10 is required for survival and growth of thyroid cancer cells. Todaro, M., Zerilli, M., Ricci-Vitiani, L., Bini, M., Perez Alea, M., Maria Florena, A., Miceli, L., Condorelli, G., Bonventre, S., Di Gesù, G., De Maria, R., Stassi, G. Cancer Res. (2006) [Pubmed]
  37. Relation between effective radiation dose and outcome of radioiodine therapy for thyroid cancer. Maxon, H.R., Thomas, S.R., Hertzberg, V.S., Kereiakes, J.G., Chen, I.W., Sperling, M.I., Saenger, E.L. N. Engl. J. Med. (1983) [Pubmed]
  38. The effect of hepatic enzyme-inducing drugs on thyroid hormones and the thyroid gland. Curran, P.G., DeGroot, L.J. Endocr. Rev. (1991) [Pubmed]
  39. Thyroglobulin in benign and malignant thyroid disease. Gerfo, P.L., Colacchio, T., Colacchio, D., Feind, C. JAMA (1979) [Pubmed]
  40. A population-based case-control study of thyroid cancer. Ron, E., Kleinerman, R.A., Boice, J.D., LiVolsi, V.A., Flannery, J.T., Fraumeni, J.F. J. Natl. Cancer Inst. (1987) [Pubmed]
 
WikiGenes - Universities