The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Impaired insulin-induced vasodilation in small coronary arteries of Zucker obese rats is mediated by reactive oxygen species.

Insulin resistance ( IR) and associated hyperinsulinemia are major risk factors for coronary artery disease. Mechanisms linking hyperinsulinemia to coronary vascular dysfunction in IR are unclear. We evaluated insulin-induced vasodilation in isolated small coronary arteries (SCA; approximately 225 microm) of Zucker obese (ZO) and control Zucker lean (ZL) rats. Vascular responses to insulin (0.1-100 ng/ml), ACh (10(-9)-10(-5) mol/l), and sodium nitroprusside (10(-8)-10(-4) mol/l) were assessed in SCA by measurement of intraluminal diameter using videomicroscopy. Insulin-induced dilation was decreased in ZO compared with ZL rats, whereas ACh and sodium nitroprusside elicited similar vasodilations. Pretreatment of arteries with SOD (200 U/ml), a scavenger of reactive oxygen species (ROS), restored the vasorelaxation response to insulin in ZO arteries, whereas ZL arteries were unaffected. Pretreatment of SCA with N-nitro-L-arginine methyl ester (100 micromol/l), an inhibitor of endothelial nitric oxide (NO) synthase (eNOS), elicited a vasoconstrictor response to insulin that was greater in ZO than in ZL rats. This vasoconstrictor response was reversed to vasodilation in ZO and ZL rats by cotreatment of the SCA with SOD or apocynin (10 micromol/l), a specific inhibitor of vascular NADPH oxidase. Lucigenin-enhanced chemiluminescence showed increased basal ROS levels as well as insulin (330 ng/ml)-stimulated production of ROS in ZO arteries that was sensitive to inhibition by apocynin. Western blot analysis revealed increased eNOS expression in ZO rats, whereas Mn SOD and Cu,Zn SOD expression were similar to ZL rats. Thus IR in ZO rats leads to decreased insulin-induced vasodilation, probably as a result of increased production of ROS by vascular NADPH oxidase, leading to decreased NO bioavailability, despite a compensatory increase in eNOS expression.[1]

References

  1. Impaired insulin-induced vasodilation in small coronary arteries of Zucker obese rats is mediated by reactive oxygen species. Katakam, P.V., Tulbert, C.D., Snipes, J.A., Erdös, B., Miller, A.W., Busija, D.W. Am. J. Physiol. Heart Circ. Physiol. (2005) [Pubmed]
 
WikiGenes - Universities