The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Hydrogen peroxide alters membrane and cytoskeleton properties and increases intercellular connections in astrocytes.

Excess hydrogen peroxide (H2O2) is produced in the pathogenesis of brain injuries and neurodegenerative diseases. H2O2 may damage cells through direct oxidation of lipids, proteins and DNA or it can act as a signaling molecule to trigger intracellular pathways leading to cell death. In this study, H2O2 caused plasma membranes of primary astrocytes to become more gel-like, while artificial membranes of vesicles composed of rat brain lipid extract became more liquid crystalline-like. Besides the effects on membrane phase properties, H2O2 promoted actin polymerization, induced the formation of cell-to-cell tunneling nanotube (TNT)-like connections among astrocytes and increased the colocalization of myosin Va with F-actin. Myosin Va was also observed in the H2O2-induced F-actin-enriched TNT-like connections. Western blot analysis suggests that H2O2 triggered the phosphorylation of the p38 mitogen- activated protein kinase ( MAPK), and that SB203580, a specific inhibitor of p38 MAPK, suppressed the changes in membrane phase properties and cytoskeleton resulting from H2O2 treatment. These results suggest that H2O2 alters astrocyte membranes and the cytoskeleton through activation of the p38 MAPK pathway.[1]

References

  1. Hydrogen peroxide alters membrane and cytoskeleton properties and increases intercellular connections in astrocytes. Zhu, D., Tan, K.S., Zhang, X., Sun, A.Y., Sun, G.Y., Lee, J.C. J. Cell. Sci. (2005) [Pubmed]
 
WikiGenes - Universities