The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Regulation of mitochondrial uncoupling proteins in mouse inner ear ganglion cells in response to systemic kanamycin challenge.

Mitochondrial uncoupling proteins are a proton transporter family involved in regulation mitochondrial superoxide and ATP production. Uncoupling proteins are expressed by rat spiral ganglion and vestibular ganglion cells [Hear Res 196 (2004) 39]. This study tests the hypothesis that uncoupling protein expression is up-regulated in response to the reactive oxygen species challenge imposed by kanamycin and antioxidant (2,3-dihydroxybenzoate) treatment in mice. In control C57BL/6, CBA/J and BALB/c mice, mRNA for uncoupling protein 1, uncoupling protein 2, uncoupling protein 3, Slc25a27 (uncoupling protein 4) and Slc25a14 (uncoupling protein 5/BMCP1) was expressed in the spiral and vestibular ganglia. After kanamycin-treatment (700 mg/kg twice daily for 14 days s.c.), uncoupling protein 2 and uncoupling protein 3 mRNA expression increased significantly in spiral and vestibular ganglia and kidney, but was unaffected in cerebral cortex. Significant Slc25a27 (uncoupling protein 4) mRNA up-regulation was also observed in spiral and vestibular ganglia, but not in kidney or cerebral cortex. These effects were blocked by simultaneous administration of kanamycin and 2,3-dihydroxybenzoate (300 mg/kg twice daily for 14 days s.c.). Western immunoblotting and immunohistochemistry confirmed the uncoupling protein 2 and uncoupling protein 3 up-regulation in inner ear. Finally, 2,3-dihydroxybenzoate treatment alone produced an upregulation of uncoupling protein 1 mRNA in the spiral ganglion, vestibular ganglion and cerebral cortex, but not the kidney. Uncoupling protein 2 and uncoupling protein 3 upregulation in the kidney and inner ear ganglia likely reflects their general role as a feedback pathway to reduce mitochondrial superoxide generation. Slc25a27 (uncoupling protein 4) upregulation in the inner ear ganglia, by contrast, is likely to be a secondary response to kanamycin-induced hair cell death. We propose that increased uncoupling protein 2, uncoupling protein 3 and Slc25a27 expression has several neuroprotective effects via reduction in mitochondrial superoxide generation and local thermogenesis, including: (1) reducing mean ROS load to prevent apoptosis, (2) increasing signal-to-noise characteristics of intracellular ROS signaling pathways (e.g. lipoxygenases, growth factor and transcription factors), (3) heat-related alteration of enzyme kinetics and (4) promotion of cell depolarization (activation of heat-gated ion channels).[1]

References

 
WikiGenes - Universities