The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Allosteric modulation of the effect of escitalopram, paroxetine and fluoxetine: in-vitro and in-vivo studies.

Clinical and preclinical studies have shown that the effect of citalopram on serotonin (5-HT) reuptake inhibition and its antidepressant activity resides in the S-enantiomer. In addition, using a variety of in-vivo and in-vitro paradigms, it was shown that R-citalopram counteracts the effect of escitalopram. This effect was suggested to occur via an allosteric modulation at the level of the 5-HT transporter. Using in-vitro binding assays at membranes from COS-1 cells expressing the human 5-HT transporter (hSERT) and in-vivo electrophysiological and microdialysis techniques in rats, the present study was directed at determining whether R-citalopram modifies the action of selective serotonin reuptake inhibitors (SSRIs) known to act on allosteric sites namely escitalopram, and to a lesser extent paroxetine, compared to fluoxetine, which has no affinity for these sites. In-vitro binding studies showed that R-citalopram attenuated the association rates of escitalopram and paroxetine to the 5-HT transporter, but had no effect on the association rates of fluoxetine, venlafaxine or sertraline. In the rat dorsal raphe nucleus, R-citalopram (250 mug/kg i.v.) blocked the suppressant effect on neuronal firing activity of both escitalopram (100 mug/kg i.v.) and paroxetine (500 mug/kg i.v.), but not fluoxetine (10 mg/kg i.v.). Interestingly, administration of R-citalopram (8 mg/kg i.p.) attenuated the increase of extracellular levels of 5-HT ([5-HT]ext) in the ventral hippocampus induced by both escitalopram (0.28 muM) and paroxetine (0.75 muM), but not fluoxetine (10 muM). In conclusion, the present in-vitro and in-vivo studies show that R-citalopram counteracts the activity of escitalopram and paroxetine, but not fluoxetine, by acting at the allosteric binding site of the 5-HT transporter, either located in the dorsal raphe nucleus or post-synaptically in the ventral hippocampus. This conclusion is strengthened by the observation that the inhibitory effect of fluoxetine, which has no stabilizing effect on the radioligand/hSERT complex, was not blocked by co-administration of R-citalopram.[1]

References

  1. Allosteric modulation of the effect of escitalopram, paroxetine and fluoxetine: in-vitro and in-vivo studies. Mansari, M.E., Wiborg, O., Mnie-Filali, O., Benturquia, N., Sánchez, C., Haddjeri, N. Int. J. Neuropsychopharmacol. (2007) [Pubmed]
 
WikiGenes - Universities