The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Acid-sensing ionic channels in the rat vestibular endorgans and ganglia.

Acid-sensing ionic channels (ASICs) are members of the epithelial Na+ channel/degenerin (ENaC/DEG) superfamily. ASICs are widely distributed in the central and peripheral nervous system. They have been implicated in synaptic transmission, pain perception, and the mechanoreception in peripheral tissues. Our objective was to characterize proton-gated currents mediated by ASICs and to determine their immunolocation in the rat vestibular periphery. Voltage clamp of cultured afferent neurons from P7 to P10 rats showed a proton-gated current with rapid activation and complete desensitization, which was carried almost exclusively by sodium ions. The current response to protons (H+) has a pH0.5 of 6. 2. This current was reversibly decreased by amiloride, gadolinium, lead, acetylsalicylic acid, and enhanced by FMRFamide and zinc, and negatively modulated by raising the extracellular calcium concentration. Functional expression of the current was correlated with smaller-capacitance neurons. Acidification of the extracellular pH generated action potentials in vestibular neurons, suggesting a functional role of ASICs in their excitability. Immunoreactivity to ASIC1a and ASIC2a subunits was found in small vestibular ganglion neurons and afferent fibers that run throughout the macula utricle and crista stroma. ASIC2b, ASIC3, and ASIC4 were expressed to a lesser degree in vestibular ganglion neurons. The ASIC1b subunit was not detected in the vestibular endorgans. No acid-pH-sensitive currents or ASIC immunoreactivity was found in hair cells. Our results indicate that proton-gated current is carried through ASICs and that ionic current activated by H+ contributes to shape the vestibular afferent neurons' response to its synaptic input.[1]


  1. Acid-sensing ionic channels in the rat vestibular endorgans and ganglia. Mercado, F., López, I.A., Acuna, D., Vega, R., Soto, E. J. Neurophysiol. (2006) [Pubmed]
WikiGenes - Universities