The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Expression Profiling Identifies Altered Expression of Genes That Contribute to the Inhibition of Transforming Growth Factor-{beta} Signaling in Ovarian Cancer.

Ovarian cancer is resistant to the antiproliferative effects of transforming growth factor-beta (TGF-beta); however, the mechanism of this resistance remains unclear. We used oligonucleotide arrays to profile 37 undissected, 68 microdissected advanced-stage, and 14 microdissected early-stage papillary serous cancers to identify signaling pathways involved in ovarian cancer. A total of seven genes involved in TGF-beta signaling were identified that had altered expression >1.5-fold (P < 0.001) in the ovarian cancer specimens compared with normal ovarian surface epithelium. The expression of these genes was coordinately altered: genes that inhibit TGF-beta signaling (DACH1, BMP7, and EVI1) were up-regulated in advanced-stage ovarian cancers and, conversely, genes that enhance TGF-beta signaling (PCAF, TFE3, TGFBRII, and SMAD4) were down-regulated compared with the normal samples. The microarray data for DACH1 and EVI1 were validated using quantitative real-time PCR on 22 microdissected ovarian cancer specimens. The EVI1 gene locus was amplified in 43% of the tumors, and there was a significant correlation (P = 0.029) between gene copy number and EVI1 gene expression. No amplification at the DACH1 locus was found in any of the samples. DACH1 and EVI1 inhibited TGF-beta signaling in immortalized normal ovarian epithelial cells, and a dominant-negative DACH1, DACH1-DeltaDS, partially restored signaling in an ovarian cancer cell line resistant to TGF-beta. These results suggest that altered expression of these genes is responsible for disrupted TGF-beta signaling in ovarian cancer and they may be useful as new and novel therapeutic targets for ovarian cancer. (Cancer Res 2006; 66(17): 8404-12).[1]

References

  1. Expression Profiling Identifies Altered Expression of Genes That Contribute to the Inhibition of Transforming Growth Factor-{beta} Signaling in Ovarian Cancer. Sunde, J.S., Donninger, H., Wu, K., Johnson, M.E., Pestell, R.G., Rose, G.S., Mok, S.C., Brady, J., Bonome, T., Birrer, M.J. Cancer Res. (2006) [Pubmed]
 
WikiGenes - Universities