Reduction of Diabetes-Induced Oxidative Stress, Fibrotic Cytokine Expression, and Renal Dysfunction in Protein Kinase C{beta}-Null Mice.
Diabetes induces the activation of several protein kinase C (PKC) isoforms in the renal glomeruli. We used PKC-beta(-/-) mice to examine the action of PKC-beta isoforms in diabetes-induced oxidative stress and renal injury at 8 and 24 weeks of disease. Diabetes increased PKC activity in renal cortex of wild-type mice and was significantly reduced (<50% of wild-type) in diabetic PKC-beta(-/-) mice. In wild-type mice, diabetes increased the translocation of PKC-alpha and -beta1 to the membrane, whereas only PKC-alpha was elevated in PKC-beta(-/-) mice. Increases in urinary isoprostane and 8-hydroxydeoxyguanosine, parameters of oxidative stress, in diabetic PKC-beta(-/-) mice were significantly reduced compared with diabetic wild-type mice. Diabetes increased NADPH oxidase activity and the expressions of p47(phox), Nox2, and Nox4 mRNA levels in the renal cortex and were unchanged in diabetic PKC-beta(-/-) mice. Increased expression of endothelin-1 (ET-1), vascular endothelial growth factor (VEGF), transforming growth factor (TGF)-beta, connective tissue growth factor (CTGF), and collagens IV and VI found in diabetic wild-type mice was attenuated in diabetic PKC-beta(-/-) mice. Diabetic PKC-beta(-/-) mice were protected from renal hypertrophy, glomerular enlargement, and hyperfiltration observed in diabetic wild-type mice and had less proteinuria. Lack of PKC-beta can protect against diabetes-induced renal dysfunction, fibrosis, and increased expressions of Nox2 and -4, ET-1, VEGF, TGF-beta, CTGF, and oxidant production.[1]References
- Reduction of Diabetes-Induced Oxidative Stress, Fibrotic Cytokine Expression, and Renal Dysfunction in Protein Kinase C{beta}-Null Mice. Ohshiro, Y., Ma, R.C., Yasuda, Y., Hiraoka-Yamamoto, J., Clermont, A.C., Isshiki, K., Yagi, K., Arikawa, E., Kern, T.S., King, G.L. Diabetes (2006) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg