The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Chronic nicotine exposure enhances insulin-induced mitogenic signaling via up-regulation of alpha7 nicotinic receptors in isolated rat aortic smooth muscle cells.

Insulin resistance and smoking are significant risk factors for cardiac and cerebral vascular diseases. Because vascular smooth muscle cells play a key role in the development and progression of atherosclerosis, we investigated the effect of nicotine on insulin-induced mitogenic signaling in aortic vascular smooth muscle cells isolated from Sprague Dawley rats. RT-PCR revealed the expression of alpha2-7, alpha10, beta1-3, delta, and epsilon subunits of the nicotinic acetylcholine receptor (nAChR) in the cells. Short-term nicotine treatment stimulated phosphorylation of p44/42-MAPK, p38- MAPK, and signal transducer and activator of transcription 3. However, an additive effect of nicotine pretreatment on insulin stimulation was only observed on p44/42-MAPK. The nicotine-induced phosphorylation of p44/42-MAPK and [methyl-(3)H]thymidine incorporation were effectively suppressed by a alpha7-nAChR-selective antagonist, methyllycaconitine, and the phosphorylation of p44/42-MAPK was stimulated by a alpha7-nAChR-specific agonist, GTS21. Furthermore, the phosphorylation was mediated via calmodulin kinase II, Src, and Shc. Interestingly, long-term (48-h) pretreatment with nicotine increased the amount of alpha7-AChR in the plasma membrane and insulin-induced phosphorylation of p44/42-MAPK. These results provide the first evidence that acute exposure to nicotine enhances insulin-induced mitogenesis predominantly by affecting the phosphorylation of p44/42-MAPK and that chronic exposure further augments the insulin signal via up-regulation of alpha7-nAChR, which may be crucial for the development and progression of atherosclerosis in large vessels.[1]

References

 
WikiGenes - Universities