The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Phosphorylation of the NF2 tumor suppressor in Schwann cells is mediated by Cdc42-Pak and requires paxillin binding.

Mutations in the Neurofibromatosis type 2 tumor suppressor gene that encodes Schwannomin causes formation of benign schwannomas. Schwannoma cells lose their characteristic bipolar shape and become rounded with excessive ruffling membranes. Schwannomin is phosphorylated at serine 518 (S518) by p21 activated kinase (Pak). Unphosphorylated schwannomin is associated with growth inhibition but little is known about the function of the phosphorylated form, or the molecular events leading to its phosphorylation. Here, we report in SCs that schwannomin S518 phosphorylation requires binding to paxillin and targeting to the plasma membrane. Phospho-S518-schwannomin is enriched in the peripheral-most aspects of membrane specializations where paxillin, activated Pak, Cdc42 but not Rac are highly expressed. Schwannomin and Pak phosphorylation levels are not reduced in response to lowering Rac-GTP levels with NSC23766. Expression of schwannomin S518A/D-GFP variants each distinctively altered Schwann cell shape and polarity. These results are consistent with tight spatial regulation of S518 phosphorylation at the plasma membrane in a paxillin and Cdc42-Pak dependent manner that leads to local reorganization of the SC cytoskeleton.[1]


  1. Phosphorylation of the NF2 tumor suppressor in Schwann cells is mediated by Cdc42-Pak and requires paxillin binding. Thaxton, C., Lopera, J., Bott, M., Baldwin, M.E., Kalidas, P., Fernandez-Valle, C. Mol. Cell. Neurosci. (2007) [Pubmed]
WikiGenes - Universities