The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

PXN  -  paxillin

Homo sapiens

Synonyms: Paxillin
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of PXN

 

High impact information on PXN

 

Chemical compound and disease context of PXN

 

Biological context of PXN

 

Anatomical context of PXN

 

Associations of PXN with chemical compounds

  • However, it was necessary to fulfill all four conditions, i.e., integrin aggregation, integrin occupancy, tyrosine kinase activity, and actin cytoskeletal integrity, to achieve integrin-mediated focal accumulation of other cytoskeletal molecules including F-actin and paxillin [19].
  • A novel scaffolding function is described for paxillin LD4 in the binding of a complex of proteins containing active p21 GTPase-activated kinase (PAK), Nck, and the guanine nucleotide exchange factor, PIX [3].
  • RAFTK coimmunoprecipitated with the cytoskeletal protein paxillin through its C-terminal proline-rich domain in TrHBMEC [20].
  • Protein-tyrosine phosphatase (PTP)-PEST is a cytoplasmic tyrosine phosphatase that can bind and dephosphorylate the focal adhesion-associated proteins p130(CAS) and paxillin [21].
  • In vitro binding assays with glutathione S-transferase-paxillin demonstrated an interaction of alpha-tubulin with the C terminus of paxillin [22].
 

Physical interactions of PXN

  • On the other hand, paxillin localization to focal complexes at the cell periphery was unaffected or even augmented by Git2-short overexpression [23].
  • PAG3 bound to all paxillin isoforms and was induced during monocyte maturation, at which time paxillin expression is also increased and integrins are activated [24].
  • Paxillin coprecipitated with p210BCR/ABL and multiple other cellular proteins in myeloid cell lines, suggesting the formation of multimeric complexes [25].
  • In addition, pp125FAK formed signalling complexes with both paxillin and p50csk in PC-3 cells as in metastatic PCa tissues [26].
  • Hic-5 interacts with GIT1 with a different binding mode from paxillin [27].
 

Enzymatic interactions of PXN

 

Regulatory relationships of PXN

 

Other interactions of PXN

 

Analytical, diagnostic and therapeutic context of PXN

References

  1. Papilloma protein E6 abrogates shear stress-dependent survival in human endothelial cells: evidence for specialized functions of paxillin. Mattiussi, S., Matsumoto, K., Illi, B., Martelli, F., Capogrossi, M.C., Gaetano, C. Cardiovasc. Res. (2006) [Pubmed]
  2. Expression of AMAP1, an ArfGAP, provides novel targets to inhibit breast cancer invasive activities. Onodera, Y., Hashimoto, S., Hashimoto, A., Morishige, M., Mazaki, Y., Yamada, A., Ogawa, E., Adachi, M., Sakurai, T., Manabe, T., Wada, H., Matsuura, N., Sabe, H. EMBO J. (2005) [Pubmed]
  3. Paxillin LD4 motif binds PAK and PIX through a novel 95-kD ankyrin repeat, ARF-GAP protein: A role in cytoskeletal remodeling. Turner, C.E., Brown, M.C., Perrotta, J.A., Riedy, M.C., Nikolopoulos, S.N., McDonald, A.R., Bagrodia, S., Thomas, S., Leventhal, P.S. J. Cell Biol. (1999) [Pubmed]
  4. The Group 3 LIM domain protein paxillin potentiates androgen receptor transactivation in prostate cancer cell lines. Kasai, M., Guerrero-Santoro, J., Friedman, R., Leman, E.S., Getzenberg, R.H., DeFranco, D.B. Cancer Res. (2003) [Pubmed]
  5. Hsp72 interacts with paxillin and facilitates the reassembly of focal adhesions during recovery from ATP depletion. Mao, H., Wang, Y., Li, Z., Ruchalski, K.L., Yu, X., Schwartz, J.H., Borkan, S.C. J. Biol. Chem. (2004) [Pubmed]
  6. Paxillin: adapting to change. Brown, M.C., Turner, C.E. Physiol. Rev. (2004) [Pubmed]
  7. The SH2/SH3 adaptor Grb4 transduces B-ephrin reverse signals. Cowan, C.A., Henkemeyer, M. Nature (2001) [Pubmed]
  8. Binding of paxillin to alpha4 integrins modifies integrin-dependent biological responses. Liu, S., Thomas, S.M., Woodside, D.G., Rose, D.M., Kiosses, W.B., Pfaff, M., Ginsberg, M.H. Nature (1999) [Pubmed]
  9. Csk homologous kinase associates with RAFTK/Pyk2 in breast cancer cells and negatively regulates its activation and breast cancer cell migration. McShan, G.D., Zagozdzon, R., Park, S.Y., Zrihan-Licht, S., Fu, Y., Avraham, S., Avraham, H. Int. J. Oncol. (2002) [Pubmed]
  10. TGF-beta1 up-regulates paxillin protein expression in malignant astrocytoma cells: requirement for a fibronectin substrate. Han, X., Stewart, J.E., Bellis, S.L., Benveniste, E.N., Ding, Q., Tachibana, K., Grammer, J.R., Gladson, C.L. Oncogene (2001) [Pubmed]
  11. Rho-dependent and -independent tyrosine phosphorylation of focal adhesion kinase, paxillin and p130Cas mediated by Ret kinase. Murakami, H., Iwashita, T., Asai, N., Iwata, Y., Narumiya, S., Takahashi, M. Oncogene (1999) [Pubmed]
  12. Cytoskeletal and phosphoinositide requirements for muscarinic receptor signaling to focal adhesion kinase and paxillin. Linseman, D.A., McEwen, E.L., Sorensen, S.D., Fisher, S.K. J. Neurochem. (1998) [Pubmed]
  13. The activity of N-(hydroxymethyl) melamines in fresh human ovarian tumour cells and xenografts. Coley, H.M., Jarman, M., Jones, M., Sargent, J.M., Kubota, T., Lee, N.C., Goddard, P.M., Elgie, A.W., Williamson, C., Taylor, C.G., Judson, I.R. Anticancer Res. (1996) [Pubmed]
  14. Phosphorylation of paxillin by p38MAPK is involved in the neurite extension of PC-12 cells. Huang, C., Borchers, C.H., Schaller, M.D., Jacobson, K. J. Cell Biol. (2004) [Pubmed]
  15. Targeting Pyk2 to beta 1-integrin-containing focal contacts rescues fibronectin-stimulated signaling and haptotactic motility defects of focal adhesion kinase-null cells. Klingbeil, C.K., Hauck, C.R., Hsia, D.A., Jones, K.C., Reider, S.R., Schlaepfer, D.D. J. Cell Biol. (2001) [Pubmed]
  16. Actopaxin, a new focal adhesion protein that binds paxillin LD motifs and actin and regulates cell adhesion. Nikolopoulos, S.N., Turner, C.E. J. Cell Biol. (2000) [Pubmed]
  17. Tumor suppressor PTEN inhibits integrin- and growth factor-mediated mitogen-activated protein (MAP) kinase signaling pathways. Gu, J., Tamura, M., Yamada, K.M. J. Cell Biol. (1998) [Pubmed]
  18. Coupling of PAK-interacting exchange factor PIX to GIT1 promotes focal complex disassembly. Zhao, Z.S., Manser, E., Loo, T.H., Lim, L. Mol. Cell. Biol. (2000) [Pubmed]
  19. Integrin function: molecular hierarchies of cytoskeletal and signaling molecules. Miyamoto, S., Teramoto, H., Coso, O.A., Gutkind, J.S., Burbelo, P.D., Akiyama, S.K., Yamada, K.M. J. Cell Biol. (1995) [Pubmed]
  20. Characterization of signal transduction pathways in human bone marrow endothelial cells. Liu, Z.Y., Ganju, R.K., Wang, J.F., Schweitzer, K., Weksler, B., Avraham, S., Groopman, J.E. Blood (1997) [Pubmed]
  21. Inhibition of the catalytic activity of cell adhesion kinase beta by protein-tyrosine phosphatase-PEST-mediated dephosphorylation. Lyons, P.D., Dunty, J.M., Schaefer, E.M., Schaller, M.D. J. Biol. Chem. (2001) [Pubmed]
  22. Paxillin localizes to the lymphocyte microtubule organizing center and associates with the microtubule cytoskeleton. Herreros, L., Rodríguez-Fernandez, J.L., Brown, M.C., Alonso-Lebrero, J.L., Cabañas, C., Sánchez-Madrid, F., Longo, N., Turner, C.E., Sánchez-Mateos, P. J. Biol. Chem. (2000) [Pubmed]
  23. An ADP-ribosylation factor GTPase-activating protein Git2-short/KIAA0148 is involved in subcellular localization of paxillin and actin cytoskeletal organization. Mazaki, Y., Hashimoto, S., Okawa, K., Tsubouchi, A., Nakamura, K., Yagi, R., Yano, H., Kondo, A., Iwamatsu, A., Mizoguchi, A., Sabe, H. Mol. Biol. Cell (2001) [Pubmed]
  24. A new paxillin-binding protein, PAG3/Papalpha/KIAA0400, bearing an ADP-ribosylation factor GTPase-activating protein activity, is involved in paxillin recruitment to focal adhesions and cell migration. Kondo, A., Hashimoto, S., Yano, H., Nagayama, K., Mazaki, Y., Sabe, H. Mol. Biol. Cell (2000) [Pubmed]
  25. Molecular cloning of human paxillin, a focal adhesion protein phosphorylated by P210BCR/ABL. Salgia, R., Li, J.L., Lo, S.H., Brunkhorst, B., Kansas, G.S., Sobhany, E.S., Sun, Y., Pisick, E., Hallek, M., Ernst, T. J. Biol. Chem. (1995) [Pubmed]
  26. Focal adhesion kinase (pp125FAK) expression, activation and association with paxillin and p50CSK in human metastatic prostate carcinoma. Tremblay, L., Hauck, W., Aprikian, A.G., Begin, L.R., Chapdelaine, A., Chevalier, S. Int. J. Cancer (1996) [Pubmed]
  27. Hic-5 interacts with GIT1 with a different binding mode from paxillin. Nishiya, N., Shirai, T., Suzuki, W., Nose, K. J. Biochem. (2002) [Pubmed]
  28. JNK phosphorylates paxillin and regulates cell migration. Huang, C., Rajfur, Z., Borchers, C., Schaller, M.D., Jacobson, K. Nature (2003) [Pubmed]
  29. Monocyte chemoattractant protein 1 causes differential signalling mediated by proline-rich tyrosine kinase 2 in THP-1 cells. Yamasaki, M., Arai, H., Ashida, N., Ishii, K., Kita, T. Biochem. J. (2001) [Pubmed]
  30. Characterization of morphological and cytoskeletal changes in trophoblast cells induced by insulin-like growth factor-I. Kabir-Salmani, M., Shiokawa, S., Akimoto, Y., Hasan-Nejad, H., Sakai, K., Nagamatsu, S., Sakai, K., Nakamura, Y., Hosseini, A., Iwashita, M. J. Clin. Endocrinol. Metab. (2002) [Pubmed]
  31. Localized suppression of RhoA activity by Tyr31/118-phosphorylated paxillin in cell adhesion and migration. Tsubouchi, A., Sakakura, J., Yagi, R., Mazaki, Y., Schaefer, E., Yano, H., Sabe, H. J. Cell Biol. (2002) [Pubmed]
  32. Roles of Gab1 and SHP2 in paxillin tyrosine dephosphorylation and Src activation in response to epidermal growth factor. Ren, Y., Meng, S., Mei, L., Zhao, Z.J., Jove, R., Wu, J. J. Biol. Chem. (2004) [Pubmed]
  33. Tyrosine phosphorylation of the related adhesion focal tyrosine kinase in megakaryocytes upon stem cell factor and phorbol myristate acetate stimulation and its association with paxillin. Hiregowdara, D., Avraham, H., Fu, Y., London, R., Avraham, S. J. Biol. Chem. (1997) [Pubmed]
  34. c-Src mediates mitogenic signals and associates with cytoskeletal proteins upon vascular endothelial growth factor stimulation in Kaposi's sarcoma cells. Munshi, N., Groopman, J.E., Gill, P.S., Ganju, R.K. J. Immunol. (2000) [Pubmed]
  35. Integrin engagement, the actin cytoskeleton, and c-Src are required for the calcitonin-induced tyrosine phosphorylation of paxillin and HEF1, but not for calcitonin-induced Erk1/2 phosphorylation. Zhang, Z., Baron, R., Horne, W.C. J. Biol. Chem. (2000) [Pubmed]
  36. Myocilin binding to Hep II domain of fibronectin inhibits cell spreading and incorporation of paxillin into focal adhesions. Peters, D.M., Herbert, K., Biddick, B., Peterson, J.A. Exp. Cell Res. (2005) [Pubmed]
  37. The microtubule binding drug laulimalide inhibits vascular endothelial growth factor-induced human endothelial cell migration and is synergistic when combined with docetaxel (taxotere). Lu, H., Murtagh, J., Schwartz, E.L. Mol. Pharmacol. (2006) [Pubmed]
  38. Paxillin phosphorylation: bifurcation point downstream of integrin-linked kinase (ILK) in streptococcal invasion. Wang, B., Li, S., Dedhar, S., Cleary, P.P. Cell. Microbiol. (2007) [Pubmed]
  39. Overexpression of hyperactive integrin-linked kinase leads to increased cellular radiosensitivity. Cordes, N. Cancer Res. (2004) [Pubmed]
  40. Divergent signaling pathways link focal adhesion kinase to mitogen-activated protein kinase cascades. Evidence for a role of paxillin in c-Jun NH(2)-terminal kinase activation. Igishi, T., Fukuhara, S., Patel, V., Katz, B.Z., Yamada, K.M., Gutkind, J.S. J. Biol. Chem. (1999) [Pubmed]
  41. Proline-rich tyrosine kinase-2 activation by beta 1 integrin fibronectin receptor cross-linking and association with paxillin in human natural killer cells. Gismondi, A., Bisogno, L., Mainiero, F., Palmieri, G., Piccoli, M., Frati, L., Santoni, A. J. Immunol. (1997) [Pubmed]
  42. Molecular dissection of actopaxin-integrin-linked kinase-Paxillin interactions and their role in subcellular localization. Nikolopoulos, S.N., Turner, C.E. J. Biol. Chem. (2002) [Pubmed]
 
WikiGenes - Universities