The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Increased UDP-GlcNAc:Gal beta 1-3GaLNAc-R (GlcNAc to GaLNAc) beta-1, 6-N-acetylglucosaminyltransferase activity in metastatic murine tumor cell lines. Control of polylactosamine synthesis.

Malignant transformation of rodent cell lines by polyoma virus and by activated ras genes is associated with increased UDP-GlcNAc:Man alpha-R beta-1,6-N-acetylglucosaminyltransferase V (GlcNAc-transferase V) activity and it product -GlcNAc beta 1-6Man alpha 1-6Man beta 1-branched Asn-linked oligosaccharides. In this report, we have compared beta 1-6GlcNAc branching of core O- and N-linked oligosaccharides in three experimental models of malignancy, namely (a) rat2 fibroblasts and their malignant T24H-ras-transfected counterpart; (b) benign SP1 mammary carcinoma cells and two metastic sublines of SP1; and (c) the metastatic MDAY-D2 lymphoma cell line and its poorly metastatic glycosylation mutant KBL-1. In addition to the previously reported increase in GlcNAc-transferase V activity, UDP-GlcNAc:Gal beta 1-3GalNAc alpha-R (GlcNAc to GalNAc) beta-1,6-N-acetylglucosaminyltransferase ( core 2 GlcNAc-transferase, EC 2.4.1.102) activity was found to be elevated by 70% in the malignant rat2 and SP1 cell lines while several other glycosyltransferase activities were not significantly different. The action of core 2 GlcNAc-transferase followed by beta 1-4Gal-transferase provides an N-acetyllactosamine antenna that can be extended with polylactosamine (i.e. repeating Gal beta 1-4GlcNAc beta 1-3) provided UDP-GlcNAc:Gal beta-R beta 1-3GlcNAc-transferase (GlcNAc-transferase) (i)) activity is present. Polylactosamine content in microsomal membrane glycoproteins was quantitated by labeling the GlcNAc termini resulting from the action of Escherichia freundii endo-beta-galactosidase with bovine galactosyltransferase/UDP-[3H] Gal. Glycopeptidase F- sensitive and -insensitive fractions were measured to assess the N- and O-linked components. In the SP1 tumor model, the metastatic sublines showed increased core 2 GlcNAc-transferase and GlcNAc-transferase V activities but no change in GlcNAc-transferase (i) activity, yet polylactosamine was increased in both O- and N-linked oligosaccharides. In rat2 cells, down-regulation of GlcNAc-transferase (i) following transformation was associated with decreased polyactosamine even though core 2 GlcNAc-transferase and GlcNAc-transferase V were elevated in the cells. Finally, a 3-fold decrease in GlcNAc-transferase V in KBL-1, the glycosylation mutant of MDAY-D2 cells, resulted in complete loss of polylactosamine in N-linked but no change in O-linked polylactosamine content. These results suggest that, provided GlcNAc-transferase (i) is not limiting, the beta 1-6-branching enzymes core 2 GlcNAc-transferase and GlcNAc-transferase V regulate the levels of polyactosamine in O- and N-linked oligosaccharides, respectively.(ABSTRACT TRUNCATED AT 400 WORDS)[1]

References

 
WikiGenes - Universities