The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Polyomavirus

  • Location of the sequences coding for capsid proteins VP1 and VP2 on polyoma virus DNA [1].
  • The polyomavirus major capsid protein VP1, purified after expression of the recombinant gene in E. coli, was isolated as oligomers resembling the dissociated capsomeres derived from viral capsids [2].
  • Here we show that VP2 from both polyoma virus and simian virus 40 (SV40) is covalently linked to myristic acid; this is the first report of a myristylated protein in the nucleus and of a fatty acid being important in the structure of a nonenveloped virus [3].
  • Cells whose in vitro life-span has been extended by these procedures can be fully transformed by transfection with oncogenes belonging to a different complementation group, including genes of the ras family, adenovirus E1b and polyoma virus middle T (refs 4, 5) [4].
  • Several viral transforming proteins, including the src protein of Rous sarcoma virus, the p120 protein of Abelson leukaemia virus and the middle T antigen of polyoma virus, are phosphorylated by associated tyrosine kinases [5].

High impact information on Polyomavirus


Chemical compound and disease context of Polyomavirus


Biological context of Polyomavirus


Anatomical context of Polyomavirus


Gene context of Polyomavirus

  • Delivery of ALSV-A-based RCAS vectors encoding either mouse polyoma virus middle T antigen (PyMT) or c-Myc to elastase-tv-a transgenic, Ink4a/Arf null mice induced the formation of pancreatic tumors [25].
  • The hexapeptide motif KYHPDK was found in zuotin as well as in several yeast proteins, DnaJ of E.coli, csp29 and csp32 proteins of Drosophila and the small t and large T antigens of the polyoma virus [26].
  • Coordinated trans activation of DNA synthesis- and precursor-producing enzymes by polyomavirus large T antigen through interaction with the retinoblastoma protein [27].
  • Activation of Ets2 at Thr-72 acts in the stroma, downstream of vascular endothelial growth factor production, in part through the regulation of macrophage proteases to support the progression of Neu- and polyomavirus middle-T-initiated mammary tumors [28].
  • Furthermore, p120 was tyrosine phosphorylated in avian cells expressing middle T antigen, the transforming protein of polyomavirus, as well as in rodent cells stimulated with either epidermal growth factor (EGF) or platelet-derived growth factor [29].

Analytical, diagnostic and therapeutic context of Polyomavirus


  1. Location of the sequences coding for capsid proteins VP1 and VP2 on polyoma virus DNA. Smith, A.E., Kamen, R., Mangel, W.F., Shure, H., Wheeler, T. Cell (1976) [Pubmed]
  2. Self-assembly of purified polyomavirus capsid protein VP1. Salunke, D.M., Caspar, D.L., Garcea, R.L. Cell (1986) [Pubmed]
  3. Myristic acid is coupled to a structural protein of polyoma virus and SV40. Streuli, C.H., Griffin, B.E. Nature (1987) [Pubmed]
  4. Cellular immortalization by a cDNA clone encoding the transformation-associated phosphoprotein p53. Jenkins, J.R., Rudge, K., Currie, G.A. Nature (1984) [Pubmed]
  5. Phosphorylation of gastrin-17 by epidermal growth factor-stimulated tyrosine kinase. Baldwin, G.S., Knesel, J., Monckton, J.M. Nature (1983) [Pubmed]
  6. Core-binding factor beta interacts with Runx2 and is required for skeletal development. Yoshida, C.A., Furuichi, T., Fujita, T., Fukuyama, R., Kanatani, N., Kobayashi, S., Satake, M., Takada, K., Komori, T. Nat. Genet. (2002) [Pubmed]
  7. The transactivator proteins VP16 and GAL4 bind replication factor A. He, Z., Brinton, B.T., Greenblatt, J., Hassell, J.A., Ingles, C.J. Cell (1993) [Pubmed]
  8. Transmeiotic differentiation of male germ cells in culture. Rassoulzadegan, M., Paquis-Flucklinger, V., Bertino, B., Sage, J., Jasin, M., Miyagawa, K., van Heyningen, V., Besmer, P., Cuzin, F. Cell (1993) [Pubmed]
  9. Characterization of two 85 kd proteins that associate with receptor tyrosine kinases, middle-T/pp60c-src complexes, and PI3-kinase. Otsu, M., Hiles, I., Gout, I., Fry, M.J., Ruiz-Larrea, F., Panayotou, G., Thompson, A., Dhand, R., Hsuan, J., Totty, N. Cell (1991) [Pubmed]
  10. Polyoma small and middle T antigens and SV40 small t antigen form stable complexes with protein phosphatase 2A. Pallas, D.C., Shahrik, L.K., Martin, B.L., Jaspers, S., Miller, T.B., Brautigan, D.L., Roberts, T.M. Cell (1990) [Pubmed]
  11. Phosphorylation of middle T by pp60c-src: a switch for binding of phosphatidylinositol 3-kinase and optimal tumorigenesis. Talmage, D.A., Freund, R., Young, A.T., Dahl, J., Dawe, C.J., Benjamin, T.L. Cell (1989) [Pubmed]
  12. Effects of cycloheximide on virus RNA replication in an inducible line of polyoma-transformed rat cells. Manor, H., Neer, A. Cell (1975) [Pubmed]
  13. Tumor antigens induced by nontransforming mutants of polyoma virus. Silver, J., Schaffhausen, B., Benjamin, T. Cell (1978) [Pubmed]
  14. Identification of a rat liver nuclear protein that binds to the enhancer core element of three animal viruses. Johnson, P.F., Landschulz, W.H., Graves, B.J., McKnight, S.L. Genes Dev. (1987) [Pubmed]
  15. Revertants of v-fos-transformed fibroblasts have mutations in cellular genes essential for transformation by other oncogenes. Zarbl, H., Latreille, J., Jolicoeur, P. Cell (1987) [Pubmed]
  16. Germ line transmission of autonomous genetic elements in transgenic mouse strains. Rassoulzadegan, M., Léopold, P., Vailly, J., Cuzin, F. Cell (1986) [Pubmed]
  17. Enhancement of polyoma virus middle T antigen tyrosine phosphorylation by epidermal growth factor. Segawa, K., Ito, Y. Nature (1983) [Pubmed]
  18. A common function for polyoma virus large-T and papillomavirus E1 proteins? Clertant, P., Seif, I. Nature (1984) [Pubmed]
  19. Molecular cloning of polyoma virus DNA in Escherichia coli: oncogenicity testing in hamsters. Israel, M.A., Chan, H.W., Martin, M.A., Rowe, W.P. Science (1979) [Pubmed]
  20. The c-Ha-ras oncogene and a tumor promoter activate the polyoma virus enhancer. Wasylyk, C., Imler, J.L., Perez-Mutul, J., Wasylyk, B. Cell (1987) [Pubmed]
  21. Pax8 has a key role in thyroid cell differentiation. Pasca di Magliano, M., Di Lauro, R., Zannini, M. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  22. Interleukin 2- and polyomavirus middle T antigen-induced modification of phosphatidylinositol 3-kinase activity in activated T lymphocytes. Augustine, J.A., Sutor, S.L., Abraham, R.T. Mol. Cell. Biol. (1991) [Pubmed]
  23. Polyoma virus middle T antigen: relationship to cell membranes and apparent lack of ATP-binding activity. Schaffhausen, B.S., Dorai, H., Arakere, G., Benjamin, T.L. Mol. Cell. Biol. (1982) [Pubmed]
  24. Evidence that the middle T antigen of polyomavirus interacts with the membrane skeleton. Andrews, D.W., Gupta, J., Abisdris, G. Mol. Cell. Biol. (1993) [Pubmed]
  25. The c-myc and PyMT oncogenes induce different tumor types in a somatic mouse model for pancreatic cancer. Lewis, B.C., Klimstra, D.S., Varmus, H.E. Genes Dev. (2003) [Pubmed]
  26. Zuotin, a putative Z-DNA binding protein in Saccharomyces cerevisiae. Zhang, S., Lockshin, C., Herbert, A., Winter, E., Rich, A. EMBO J. (1992) [Pubmed]
  27. Coordinated trans activation of DNA synthesis- and precursor-producing enzymes by polyomavirus large T antigen through interaction with the retinoblastoma protein. Mudrak, I., Ogris, E., Rotheneder, H., Wintersberger, E. Mol. Cell. Biol. (1994) [Pubmed]
  28. Ets2-dependent stromal regulation of mouse mammary tumors. Man, A.K., Young, L.J., Tynan, J.A., Lesperance, J., Egeblad, M., Werb, Z., Hauser, C.A., Muller, W.J., Cardiff, R.D., Oshima, R.G. Mol. Cell. Biol. (2003) [Pubmed]
  29. Tyrosine phosphorylation of a 120-kilodalton pp60src substrate upon epidermal growth factor and platelet-derived growth factor receptor stimulation and in polyomavirus middle-T-antigen-transformed cells. Kanner, S.B., Reynolds, A.B., Parsons, J.T. Mol. Cell. Biol. (1991) [Pubmed]
  30. Transforming activity of polyoma virus middle-T antigen probed by site-directed mutagenesis. Oostra, B.A., Harvey, R., Ely, B.K., Markham, A.F., Smith, A.E. Nature (1983) [Pubmed]
  31. Studies on the polyoma virus tumor-specific transplantation antigen (TSTA). Dalianis, T. Adv. Cancer Res. (1990) [Pubmed]
  32. Purification of polyoma virus medium-size tumor antigen by immunoaffinity chromatography. Walter, G., Hutchinson, M.A., Hunter, T., Eckhart, W. Proc. Natl. Acad. Sci. U.S.A. (1982) [Pubmed]
  33. Chicken beta B1-crystallin gene expression: presence of conserved functional polyomavirus enhancer-like and octamer binding-like promoter elements found in non-lens genes. Roth, H.J., Das, G.C., Piatigorsky, J. Mol. Cell. Biol. (1991) [Pubmed]
  34. Polyoma-induced stimulation of cellular RNA synthesis is paralleled by changed expression of the viral genome. Salomon, C., Türler, H., Weil, R. Nucleic Acids Res. (1977) [Pubmed]
WikiGenes - Universities