The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Antidiabetic properties of berberine: from cellular pharmacology to clinical effects.

Berberine is an alkaloid that is highly concentrated in the roots, rhizomes, and stem bark of various plants. It affects glucose metabolism, increasing insulin secretion, stimulating glycolysis, suppressing adipogenesis, inhibiting mitochondrial function, activating the 5' adenosine monophosphate-activated protein kinase (AMPK) pathway, and increasing glycokinase activity. Berberine also increases glucose transporter-4 (GLUT-4) and glucagon-like peptide-1 (GLP-1) levels. On GLP-1 receptor activation, adenylyl cyclase is activated, and cyclic adenosine monophosphate is generated, leading to activation of second messenger pathways and closure of adenosine triphosphate-dependent potassium channels. Increased intracellular potassium causes depolarization, and calcium influx through the voltage-dependent calcium channels occurs. This intracellular calcium increase stimulates the migration and exocytosis of the insulin granules. In glucose-consuming tissues, such as adipose, or liver or muscle cells, berberine affects both GLUT-4 and retinol-binding protein-4 in favor of glucose uptake into cells; stimulates glycolysis by AMPK activation; and has effects on the peroxisome proliferator-activated receptor γ molecular targets and on the phosphorylation of insulin receptor substrate-1, finally resulting in decreased insulin resistance. Moreover, recent studies suggest that berberine could have a direct action on carbohydrate metabolism in the intestine. The antidiabetic and insulin-sensitizing effect of berberine has also been confirmed in a few relatively small, short-term clinical trials. The tolerability is high for low dosages, with some gastrointestinal complaints appearing to be associated with use of high dosages.[1]

References

  1. Antidiabetic properties of berberine: from cellular pharmacology to clinical effects. Cicero, A.F., Tartagni, E. Hosp. Pract. (Minneap) (2012) [Pubmed]
 
WikiGenes - Universities