The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Structure, position, and biosynthesis of the high mannose and the complex oligosaccharide side chains of the bean storage protein phaseolin.

Phaseolin, the major storage protein of the common bean (Phaseolus vulgaris), is a glycoprotein which is synthesized during seed development and accumulates in protein storage vacuoles or protein bodies. The protein has three different N-linked oligosaccharide side chains: Man9(GlcNAc)2, Man7(GlcNAc)2, and Xyl-Man3(GlcNAc)2 (where Xyl represents xylose). The structures of these glycans were determined by 1H NMR spectroscopy. The Man9(GlcNAc)2 glycan has the typical structure found in plant and animal glycoproteins. The structures of the two other glycans are shown below. (Formula; see text) Phaseolin was separated by electrophoresis on denaturing gels into four size classes of polypeptides. The two abundant ones have two oligosaccharides each, whereas the less abundant ones have only one oligosaccharide each. Polypeptides with two glycans have Man7(GlcNAc)2 attached to Asn252 and Man9(GlcNAc)2 attached to Asn341. Polypeptides with only one glycan have Xyl-Man3(GlcNAc)2 attached to Asn252. Both these asparagine residues are in canonical glycosylation sites; the numbering starts with the N-terminal methionine of the signal peptide of phaseolin. The presence of the Man7(GlcNAc)2 and of Xyl-Man3(GlcNAc)2 at the same asparagine residue (position 252) of different polypeptides seems to be controlled by the glycosylation status of Asn341. When Asp341 is unoccupied, the glycan at Asn252 is complex. When Asn341 is occupied, the glycan at Asn252 is only modified to the extent that 2 mannosyl residues are removed. The processing of the glycans, after the removal of the glucose residues, involves enzymes in the Golgi apparatus as well as in the protein bodies. Formation of the Xyl-Man3(GlcNAc)2 glycan is a multistep process that involves the Golgi apparatus-mediated removal of 6 mannose residues and the addition of 2 N-acetylglucosamine residues and 1 xylose. The terminal N-acetylglucosamine residues are later removed in the protein bodies. The conversion of Man9(GlcNAc)2 to Man7(GlcNAc)2 is a late processing event which occurs in the protein bodies. Experiments in which [3H]glucosamine-labeled phaseolin obtained from the endoplasmic reticulum (i.e. precursor phaseolin) is incubated with jack bean alpha-mannosidase show that the high mannose glycan on Asn252, but not the one on Asn341, is susceptible to enzyme degradation. Incubation of [3H] glucosamine-labeled phaseolin obtained from the Golgi apparatus with jack bean beta-N-acetylglucosaminidase results in the removal of the terminal N-acetylglucosamine residues from the complex chain.(ABSTRACT TRUNCATED AT 400 WORDS)[1]


WikiGenes - Universities