The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Reactions of cysteamine and other amine metabolites with glyoxylate and oxygen catalyzed by mammalian D-amino acid oxidase.

Pig kidney D-amino acid oxidase [D-amino-acid:oxygen oxidoreductase (deaminating), EC 1.4.3.3] catalyzes a rapid uptake of oxygen when high concentrations (50-100 mM) of glyoxylate and the following amines are present under usual assay conditions (pH 8.3): cysteamine, 2-aminoethanol, putrescine, D,L-1-amino-2-propanol, D,L-2-amino-1-propanol, 3-amino-1-propanol, D,L-octopamine, ethylenediamine, and L-cysteine ethyl ester. Notable physiological amines that do not support a rapid O2 reaction under the above conditions include histamine, serotonin, epinephrine, norepinephrine, spermidine, spermine, and cadaverine. A more detailed kinetic investigation of the reactions involving the first four reactive amines listed above indicated that the cysteamine reaction proceeds at a rapid rate even when cysteamine and glyoxylate are present at less than millimolar concentrations, but greater than millimolar concentrations are needed in the other amine reactions in order to observe a reasonable rate. At low concentrations and pH 7.4, the cysteamine-glyoxylate substrate (presumably thiazolidine-2-carboxylic acid) reacts an order of magnitude faster than any other known D-amino acid oxidase substrate. Considerable circumstantial evidence suggests that the reaction involving cysteamine is occurring physiologically, but the reactions of other amines would be occurring in the cell at a very low rate, if at all. It is proposed that the product of the enzymic reaction may be a metabolic effector that can modify the reactivity of proteins or nucleic acids by covalent attachment.[1]

References

  1. Reactions of cysteamine and other amine metabolites with glyoxylate and oxygen catalyzed by mammalian D-amino acid oxidase. Hamilton, G.A., Buckthal, D.J., Mortensen, R.M., Zerby, K.W. Proc. Natl. Acad. Sci. U.S.A. (1979) [Pubmed]
 
WikiGenes - Universities