The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Evaluation of a range of antimicrobial agents against the parasitic protozoa, Plasmodium falciparum, Babesia rodhaini and Theileria parva in vitro.

Eighteen antimicrobials commonly used in tissue culture were screened in three different protozoan test systems in order to establish their suitability for routine inclusion in protozoal cultivation systems. The human malaria parasite, Plasmodium falciparum, was inhibited by more than half the antibiotics tested at concentrations recommended for normal tissue culture use. Eight compounds were well tolerated and thus could be used prophylactically to prevent microbial contamination. These antimicrobials were the bactericidal aminoglycoside antibiotics, streptomycin, gentamicin and kanamycin, the bacteriostatic protein synthesis inhibitors, chloramphenicol and chlortetracycline and the antifungals, 5-fluorocytosine, nystatin and amphotericin B. Babesia rodhaini and Theileria parva were less sensitive than P. falciparum and tolerated all 18 compounds at concentrations well above 100 micrograms ml-1. Extension of the study to examine direct antiprotozoal action of these and other antimicrobials not normally used in culture confirmed that P. falciparum was significantly more sensitive than the other parasites. Tylosin, rifamycin, gramicidin D and valinomycin were all strongly antimalarial with IC50 values of 0.245, 1.20, 1.3 X 10(-3) and 1.9 X 10(-3) micrograms ml-1 respectively. This compares with a value of 1.35 X 10(-2) micrograms ml-1 for the standard antimalarial, chloroquine. Only valinomycin and, more particularly, gramicidin D were significantly active against B. rodhaini and T. parva. Gramicidin D was more effective, but more toxic, than the standard antiprotozoal agents tested at curing in vivo malarial and babesial infections in mice.[1]


WikiGenes - Universities