The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

AUREOMYCIN     (2Z,4S,4aS,5aS,6S,12aS)-2- (amino-hydroxy...

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Chlorotetracycline


Psychiatry related information on Chlorotetracycline


High impact information on Chlorotetracycline

  • Although indirect evidence using chlorotetracycline suggests that control of calcium homeostasis at the plasma membrane may be central to insulin secretion, the mechanism by which secretagogues influence the handling of calcium remains unknown [7].
  • Use of chlorotetracycline fluorescence to demonstrate Ca2+-induced release of Ca2+ from the sarcoplasmic reticulum of skinned cardiac cells [8].
  • The present study is a direct demonstration of Ca2+-induced release of Ca2+ from the SR of skinned cardiac cells treated with chlorotetracycline (CTC), a fluorescent chelate probe which enables changes in the amount of Ca2+ bound to a variety of biological membranes or micelles to be monitored [8].
  • The interaction of chemotactic factors (fMet-Leu-Phe and C5a) with rabbit neutrophils leads to rapid and specific release of membrane calcium, as evidenced by changes in the fluorescence of cell-associated chlorotetracycline [9].
  • Fluorescence emission intensity measurements from the spindle for chlorotetracycline (CTC) decline before the onset of anaphase, indicating a reduction in the amount of membrane-associated Ca2+ and suggesting an efflux of Ca2+ from membrane compartments into the spindle [10].

Chemical compound and disease context of Chlorotetracycline


Biological context of Chlorotetracycline


Anatomical context of Chlorotetracycline


Associations of Chlorotetracycline with other chemical compounds


Gene context of Chlorotetracycline

  • Further, IL-1 stimulated the mobilization of cell membrane-associated Ca2+ as monitored by a decrease in fluorescence of chlorotetracycline (CTC)-loaded neutrophils [27].
  • When epididymal spermatozoa were incubated in the presence of anti-TCP-11 IgG Fab fragments for a total of 120 min and assessed using chlortetracycline fluorescence, we observed a stimulation of capacitation and an inhibition of spontaneous acrosome loss, suggestive of enhanced fertility compared with untreated suspensions [28].
  • The addition of heated chlortetracycline (cTc) inactivates TetR, turning on the synthesis of Flp and TrfA, which respectively, execute (i) excision of the 51-kb genomic segment between the two FRT sites (in lacZ and in phoB), and (ii) its amplification [29].
  • Stimulus-secretion coupling in pancreatic exocrine cells was studied using dissociated acini, prepared from mouse pancreas, and chlorotetracycline (CTC), a fluorescent probe which forms highly fluorescent complexes with Ca2+ and Mg2+ ions bound to membranes [30].
  • In this article, PDGF has been shown to stimulate activation of human peripheral blood neutrophils defined by loss of membrane associated calcium as reflected by loss of chlortetracycline fluorescence, release of superoxide anion and specific granule enzymes, and enhanced neutrophil adherence and aggregation [31].

Analytical, diagnostic and therapeutic context of Chlorotetracycline


  1. Chlortetracycline for dracunculiasis. Eberhard, M.L., Brandt, F.H., Kaiser, R.L. Lancet (1991) [Pubmed]
  2. Membrane lateral phase separations and chlortetracycline transport by Bacillus megaterium. Dockter, M.E., Trumble, W.R., Magnuson, J.A. Proc. Natl. Acad. Sci. U.S.A. (1978) [Pubmed]
  3. Double-blind, placebo-controlled study of three-month treatment with lymecycline in reactive arthritis, with special reference to Chlamydia arthritis. Lauhio, A., Leirisalo-Repo, M., Lähdevirta, J., Saikku, P., Repo, H. Arthritis Rheum. (1991) [Pubmed]
  4. The anticollagenolytic potential of lymecycline in the long-term treatment of reactive arthritis. Lauhio, A., Sorsa, T., Lindy, O., Suomalainen, K., Saari, H., Golub, L.M., Konttinen, Y.T. Arthritis Rheum. (1992) [Pubmed]
  5. Chlortetracycline and demeclocycline inhibit calpains and protect mouse neurons against glutamate toxicity and cerebral ischemia. Jiang, S.X., Lertvorachon, J., Hou, S.T., Konishi, Y., Webster, J., Mealing, G., Brunette, E., Tauskela, J., Preston, E. J. Biol. Chem. (2005) [Pubmed]
  6. Release of calcium from intracellular stores in rat basophilic leukemia cells monitored with the fluorescent probe chlortetracycline. Marcotte, G.V., Millard, P.J., Fewtrell, C. J. Cell. Physiol. (1990) [Pubmed]
  7. Ca2+-activated ATPase and ATP-dependent calmodulin-stimulated Ca2+ transport in islet cell plasma membrane. Pershadsingh, H.A., McDaniel, M.L., Landt, M., Bry, C.G., Lacy, P.E., McDonald, J.M. Nature (1980) [Pubmed]
  8. Use of chlorotetracycline fluorescence to demonstrate Ca2+-induced release of Ca2+ from the sarcoplasmic reticulum of skinned cardiac cells. Fabiato, A., Fabiato, F. Nature (1979) [Pubmed]
  9. Chemotactic factor-induced release of membrane calcium in rabbit neutrophils. Naccache, P.H., Volpi, M., Showell, H.J., Becker, E.L., Sha'afi, R.I. Science (1979) [Pubmed]
  10. Ionic changes in the mitotic apparatus at the metaphase/anaphase transition. Wolniak, S.M., Hepler, P.K., Jackson, W.T. J. Cell Biol. (1983) [Pubmed]
  11. Photohemolytic potency of tetracyclines. Bjellerup, M., Ljunggren, B. J. Invest. Dermatol. (1985) [Pubmed]
  12. Abnormal aggregation accompanies abnormal platelet Ca2+ handling in arterial thrombosis. Shanbaky, N.M., Ahn, Y., Jy, W., Harrington, W., Fernandez, L., Haynes, D.H. Thromb. Haemost. (1987) [Pubmed]
  13. Treatment of infection due to penicillinase-producing Neisseria gonorrhoeae with oral thiamphenicol and with oral lymecycline. Latif, A.S., Marowa, E., Mason, P.R., Sithole, J., Tambo, J., Dhamu, F., Paraiwa, E. Sexually transmitted diseases. (1986) [Pubmed]
  14. Differences in phototoxic potency should be considered when tetracyclines are prescribed during summer-time. A study on doxycycline and lymecycline in human volunteers, using an objective method for recording erythema. Bjellerup, M., Ljunggren, B. Br. J. Dermatol. (1994) [Pubmed]
  15. Detection of the membrane-calcium distribution during mitosis in Haemanthus endosperm with chlorotetracycline. Wolniak, S.M., Hepler, P.K., Jackson, W.T. J. Cell Biol. (1980) [Pubmed]
  16. Interrelationships of polymorphonuclear neutrophil membrane-bound calcium, membrane potential, and chemiluminescence: studies in single living cells. Sullivan, G.W., Donowitz, G.R., Sullivan, J.A., Mandell, G.L. Blood (1984) [Pubmed]
  17. Evidence for cell death in the vascular endothelium in vivo and in vitro. Hansson, G.K., Schwartz, S.M. Am. J. Pathol. (1983) [Pubmed]
  18. Involvement of 60-kilodalton phosphoprotein in the regulation of calcium release from skeletal muscle sarcoplasmic reticulum. Kim, D.H., Ikemoto, N. J. Biol. Chem. (1986) [Pubmed]
  19. Chlorotetracycline fluorescence is a quantitative measure of the free internal Ca2+ concentration achieved by active transport. In situ calibration and application to bovine cardiac sarcolemmal vesicles. Dixon, D., Brandt, N., Haynes, D.H. J. Biol. Chem. (1984) [Pubmed]
  20. Mouse gamete interactions during fertilization in vitro. Chlortetracycline as a fluorescent probe for the mouse sperm acrosome reaction. Saling, P.M., Storey, B.T. J. Cell Biol. (1979) [Pubmed]
  21. Intracellular divalent cation release in pancreatic acinar cells during stimulus-secretion coupling. II. Subcellular localization of the fluorescent probe chlorotetracycline. Chandler, D.E., Williams, J.A. J. Cell Biol. (1978) [Pubmed]
  22. Chlorotetracycline as a fluorescent Ca2+ probe in pancreatic islet cells. Täljedal, I.B. J. Cell Biol. (1978) [Pubmed]
  23. Intracellular calcium storage and release in the human platelet. Chlorotetracycline as a continuous monitor. Jy, W., Haynes, D.H. Circ. Res. (1984) [Pubmed]
  24. Modes of action of aspirin-like drugs. Abramson, S., Korchak, H., Ludewig, R., Edelson, H., Haines, K., Levin, R.I., Herman, R., Rider, L., Kimmel, S., Weissmann, G. Proc. Natl. Acad. Sci. U.S.A. (1985) [Pubmed]
  25. Functionally and spatially distinct Ca2+ stores are revealed in cultured vascular smooth muscle cells. Tribe, R.M., Borin, M.L., Blaustein, M.P. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  26. Ouabain increases the calcium concentration in intracellular stores involved in stimulus-response coupling in human platelets. Roevens, P., de Chaffoy de Courcelles, D. Circ. Res. (1990) [Pubmed]
  27. Human neutrophil activation with interleukin-1. A role for intracellular calcium and arachidonic acid lipoxygenation. Smith, R.J., Epps, D.E., Justen, J.M., Sam, L.M., Wynalda, M.A., Fitzpatrick, F.A., Yein, F.S. Biochem. Pharmacol. (1987) [Pubmed]
  28. TCP-11, the product of a mouse t-complex gene, plays a role in stimulation of capacitation and inhibition of the spontaneous acrosome reaction. Fraser, L.R., Hosseini, R., Hanyalogou, A., Talmor, A., Dudley, R.K. Mol. Reprod. Dev. (1997) [Pubmed]
  29. A broad-host-range in vivo pop-out and amplification system for generating large quantities of 50- to 100-kb genomic fragments for direct DNA sequencing. Wild, J., Hradecná, Z., Pósfai, G., Szybalski, W. Gene (1996) [Pubmed]
  30. Intracellular divalent cation release in pancreatic acinar cells during stimulus-secretion coupling. I. Use of chlorotetracycline as fluorescent probe. Chandler, D.E., Williams, J.A. J. Cell Biol. (1978) [Pubmed]
  31. Platelet-derived growth factor promotes polymorphonuclear leukocyte activation. Tzeng, D.Y., Deuel, T.F., Huang, J.S., Senior, R.M., Boxer, L.A., Baehner, R.L. Blood (1984) [Pubmed]
  32. Electrocatalytic tetracycline oxidation at a mixed-valent ruthenium oxide--ruthenium cyanide-modified glassy carbon electrode and determination of tetracyclines by liquid chromatography with electrochemical detection. Loetanantawong, B., Suracheep, C., Somasundrum, M., Surareungchai, W. Anal. Chem. (2004) [Pubmed]
  33. Chlortetracycline as a probe of membrane-associated calcium and magnesium: interaction with red cell membranes, phospholipids, and proteins monitored by fluorescence and circular dichroism. Schneider, A.S., Herz, R., Sonenberg, M. Biochemistry (1983) [Pubmed]
  34. Determination by HPLC of chlortetracycline in pig faeces. Sunderland, J., Lovering, A.M., Tobin, C.M., MacGowan, A.P., Roe, J.M., Delsol, A.A. J. Antimicrob. Chemother. (2003) [Pubmed]
  35. Rifaximin versus chlortetracycline in the short-term treatment of small intestinal bacterial overgrowth. Di Stefano, M., Malservisi, S., Veneto, G., Ferrieri, A., Corazza, G.R. Aliment. Pharmacol. Ther. (2000) [Pubmed]
  36. Sperm-oviduct interaction: induction of capacitation and preferential binding of uncapacitated spermatozoa to oviductal epithelial cells in porcine species. Fazeli, A., Duncan, A.E., Watson, P.F., Holt, W.V. Biol. Reprod. (1999) [Pubmed]
WikiGenes - Universities