The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

An inhibitor of mitochondrial respiration which binds to cytochrome b and displaces quinone from the iron-sulfur protein of the cytochrome bc1 complex.

Myxothiazol, an antibiotic from Myxococcus fulvus, which inhibits mitochondrial respiration in the bc1 complex of the respiratory chain, has effects on the redox components of isolated succinate-cytochrome c reductase complex which suggest that it interacts with both cytochrome b and the iron-sulfur protein of the bc1 complex. The inhibitor appears to increase the midpoint potentials of cytochromes b-562 and b-566, as indicated by an increase in their reducibility by the succinate/fumarate couple. It also causes a red shift in the optical spectrum of ferrocytochrome b-566, as reported previously (Becker, W. F., Von Jagow , G., Anke , T., Steglisch , W. (1981) FEBS Lett. 132, 329-333). This red shift is enhanced by Triton X-100, and there is no shift in the spectrum of b-562. These results are consistent with evidence that mutations conferring myxothiazol resistance in yeast map to the mitochondrial gene for cytochrome b ( Thierbach , G., and Michaelis, G. (1982) Mol. Gen. Genet. 186, 501-506). In addition, myxothiazol has effects on reduction of the cytochromes b and c1 by succinate or ubiquinol which are identical to those caused by removal of the iron-sulfur protein from the bc1 complex. It blocks reduction of cytochrome c1 during single and multiple turnovers of the bc1 complex, but does not block reduction of the b cytochromes. In the presence of antimycin, it blocks reduction of both cytochromes b and c1. In contrast to antimycin, myxothiazol inhibits oxidant-induced reduction of both b cytochromes and does not inhibit their oxidation by fumarate. Myxothiazol also inhibits reduction of the iron-sulfur protein by ubiquinol and shifts the gx resonance in the EPR spectrum of the iron-sulfur protein from g = 1.79 to 1.76. It does not affect the midpoint potential of the iron-sulfur protein, but does eliminate the increase in midpoint potential which is caused by inhibitory hydroxyquinones which bind to the iron-sulfur protein. The effects of myxothiazol are consistent with a protonmotive Q cycle pathway of electron transfer in which myxothiazol binds to cytochrome b and displaces quinone from the iron-sulfur protein of the bc1 complex. These results suggest either that a myxothiazol-induced conformational change in cytochrome b is transmitted to a quinone binding site on the iron-sulfur protein, or that there is a quinone binding site which consists of peptide domains from both cytochrome b and iron-sulfur protein.[1]


WikiGenes - Universities