The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

2',5'-Oligoadenylates and related 2',5'-oligonucleotide analogues. 2. Effect on cellular proliferation, protein synthesis, and endoribonuclease activity.

A number of the new enzymatically synthesized 2',5'-oligonucleotide trimers, namely, those containing the nucleosides 8-azaadenosine, toyocamycin, sangivamycin, formycin, 8-bromoadenosine, tubercidin, and guanosine, were found to inhibit protein synthesis and cellular proliferation after uptake into intact L and HeLa cells. 2',5'-Oligonucleotide trimers containing cytidine, inosine, uridine, and 1,N6-ethenoadenosine had some effect while those containing 2-chloroadenosine, 3-ribosyladenine, ribavirin, and 2-beta-D-ribofuranosylthiazole-4-carboxamide had no detectable effect on protein synthesis or cellular proliferation after uptake into L or HeLa cells. All of these 2',5'-oligonucleotide analogues inhibited protein synthesis in the in vitro rabbit reticulocyte lysate system except for the trimer containing ribavirin. Such nucleoside substitutions have further defined the substrate-specificity requirements for the endoribonuclease and/or the inhibitors for the 2',5'-phosphodiesterase. Most of the 2',5'-analogues were degraded in L-cell extracts so the endogenous nucleases are not very specific. The 2',5'-trimers containing tubercidin and 2-beta-D-ribofuranosylthiazole-4-carboxamide were quite stable in comparison to the 2',5'-A trimer. The inhibition of protein synthesis and cellular proliferation observed correlated well with the degradation of rRNA and polyadenylated mRNA observed after uptake of the 2',5'-analogues into intact L cells. The degradation of the polyadenylated mRNA appeared to be a more sensitive test than inhibition of cellular protein synthesis for determining biological activities of the 2',5'-oligonucleotide analogues.[1]

References

 
WikiGenes - Universities