The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Herpes simplex virus immediate-early protein ICP22 is required for viral modification of host RNA polymerase II and establishment of the normal viral transcription program.

Infection of cells with herpes simplex virus type 1 (HSV-1) results in a rapid alteration of phosphorylation on the large subunit of cellular RNA polymerase II (RNAP II), most likely on its C-terminal domain (S. A. Rice, M. C. Long, V. Lam, C. A. Spencer, J. Virol. 68:988-1001, 1994). This phosphorylation modification generates a novel form of the large subunit which we have designed IIi. In this study, we examine roles that HSV-1 gene products play in this process. An HSV-1 mutant defective in the immediate-early transcriptional activator protein ICP4 is able to efficiently induce IIi. Viruses having mutations in the genes for the ICP0, ICP6, or ICP27 proteins are also competent for IIi formation. In contrast, 22/n199, an HSV-1 mutant which contains a nonsense mutation in the gene encoding the immediate-early protein ICP22, is significantly deficient in IIi induction. This effect is seen in Vero cells, where 22/n199 grows relatively efficiently, and in human embryonic lung (HEL) cells, where 22/n199 growth in more restricted. RNAP II is recruited into viral replication compartments in 22/n199-infected cells, indicating that altered phosphorylation of RNAP II is not a prerequisite for nuclear relocalization of RNAP II. In addition, we show by nuclear run-on transcription analysis that viral gene transcription is deficient in HEL cells infected with 22/n199. Viral late gene transcription does not occur efficiently, and antisense transcription throughout the genome is diminished compared with that of the wild-type HSV-1 infection. These transcriptional effects cannot be explained by differences in viral DNA replication, since 22/n199 replicates its DNA efficiently in HEL cells. Our results demonstrated that ICP22 is necessary for virus-induced aberrant phosphorylation of RNAP II and for normal patterns of viral gene transcription in certain cell lines.[1]

References

 
WikiGenes - Universities