Molecular characterization of a type II cyclic GMP-dependent protein kinase expressed in the rat brain.
We applied reverse transcription-PCR to examine the gene expression of cyclic GMP (cGMP)-dependent protein kinase in the rat brain. A PCR product with the size predicted from the type II cGMP-dependent protein kinase (cGK II) cDNA was detected in various regions of the brain, with highest expression in the thalamus. The amplified product of this cDNA was subcloned, sequenced, and consequently shown to be cGK II. Northern analysis confirmed that this kinase was highly expressed in the thalamus. In situ hybridization with riboprobes derived from this cDNA indicated that cGK II mRNA was highly expressed in the outer layers of the cortex, the septum, amygdala, and olfactory bulb with highest levels in the thalamus. High amounts of cGK II mRNA were also found in specific brainstem loci, including the medial habenula, the subthalamic nucleus, the locus ceruleus, the pontine nucleus, the inferior olivary nuclei, and the nucleus of the solitary tract. Only low levels of cGK II mRNA were detected in the striatum, cerebellum, and hippocampus. These data suggest that the effects of guanylyl cyclase activators, such as nitric oxide and the atriopeptides, in various regions of the CNS may be mediated through cGK II.[1]References
- Molecular characterization of a type II cyclic GMP-dependent protein kinase expressed in the rat brain. el-Husseini, A.E., Bladen, C., Vincent, S.R. J. Neurochem. (1995) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg