The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Purification and characterization of isoquinoline 1-oxidoreductase from Pseudomonas diminuta 7, a novel molybdenum-containing hydroxylase.

Isoquinoline 1-oxidoreductase, which catalyzes the hydroxylation of isoquinoline to 1-oxo-1,2-dihydroisoquinoline with concomitant reduction of a suitable electron acceptor, was purified from the isoquinoline degrading bacterium Pseudomonas diminuta 7 to apparent homogeneity. The native enzyme was a heterodimer with a molecular mass of 95 kDa consisting of a 16- and a 80-kDa subunit. It contained 0.85 g atom molybdenum, 3.95 g atom iron, 3.9 g atom acid-labile sulfur, 2.1 mol of phosphate, and 1 mol of CMP/mol of enzyme. CMP and phosphate are suggested to originate from molybdopterin cytosine dinucleotide of the pterin molybdenum cofactor. It is assumed that the iron and the acid-labile sulfur are arranged in two (2Fe-2S) clusters. The isoelectric point of the isoquinoline 1-oxidoreductase was within the range of pH 6.2 to 6. 8. Cytochrome c, ferricyanide, and several non-physiological electron acceptors served as oxidizing substrates, whereas O2 and NAD were not used. Isoquinoline 1-oxidoreductase revealed a high specificity toward the reducing substrates isoquinoline, 5-hydroxyisoquinoline, quinazoline, and phthalazine. Isoquinoline 1-oxidoreductase was inactivated by methanol, arsenite, p-hydroxymercuribenzoate, 1,10-phenanthroline, and cyanide. Additionally, the enzyme was inactivated upon incubation with its substrates isoquinoline, which slowly inhibited the enzyme in the absence of an electron acceptor, and 5-hydroxy-isoquinoline, which rapidly and very effectively inactivated the enzyme in the presence as well as in the absence of the electron acceptors iodonitrotetrazolium chloride, phenazine methosulfate, or ferricyanide.[1]

References

 
WikiGenes - Universities