Chlorocresol: an activator of ryanodine receptor-mediated Ca2+ release.
In the present study we investigated the effect of the compound chlorocresol on intracellular Ca2+ homeostasis. Three different systems that have been shown to express the ryanodine receptor Ca2+ channel were chosen, i.e., skeletal muscle sarcoplasmic reticulum, cerebellar microsomes, and PC12 cells. In skeletal muscle sarcoplasmic reticulum, 4-chloro-m-cresol was found to be a potent activator of Ca2+ release mediated by a ruthenium red/caffeine-sensitive Ca2+ release channel. In cerebellar microsomes, this compound released Ca2+ from an inositol-1,4,5-trisphosphate-insensitive store, suggesting that there too it was acting at the ryanodine receptor level. When tested on PC12 cells, chlorocresol released Ca2+ from a caffeine- and thapsigargin-sensitive intracellular store. In addition, the compound was capable of releasing Ca2+ after pretreatment of PC12 cells with bradykinin, suggesting that it acts on a channel contained within an intracellular Ca2+ store that is distinct from that sensitive to inositol-1,4,5-trisphosphate. Structure-activity relationship analyses suggest that the chloro and methyl groups in chlorocresols are important for the activation of the ryanodine receptor Ca2+ release channel.[1]References
- Chlorocresol: an activator of ryanodine receptor-mediated Ca2+ release. Zorzato, F., Scutari, E., Tegazzin, V., Clementi, E., Treves, S. Mol. Pharmacol. (1993) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg