The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

11 beta-Hydroxysteroid dehydrogenase type 2 complementary deoxyribonucleic acid stably transfected into Chinese hamster ovary cells: specific inhibition by 11 alpha-hydroxyprogesterone.

The 11 beta-hydroxysteroid dehydrogenase type 2 (11 beta HSD-2) enzyme is thought to confer aldosterone specificity upon mineralocorticoid target tissues by protecting the mineralocorticoid receptor from binding by the more abundant glucocorticoids, corticosterone and cortisol. We have developed a Chinese hamster ovary cell line stably transfected with a plasmid containing the rat 11 beta HSD-2 complementary DNA. This cell line has expressed the enzyme consistently for many generations. The 11 beta HSD-2 was located primarily in the microsomes, but significant amounts also existed in the nuclei and mitochondria. The enzymatic reaction was unidirectional, oxidative, and inhibited by the product, 11-dehydrocorticosterone, with an IC50 of approximately 200 nM. The K(m) for corticosterone was 9.6 +/- 3.1 nM, and that for NAD+ was approximately 8 microM. The enzyme did not convert dexamethasone to 11-dehydrodexamethasone. Tunicamycin, an N-glycosylation inhibitor, had no effect on enzyme activity. 11 alpha-Hydroxyprogesterone (11 alpha OH-P) was an order of magnitude more potent a competitive inhibitor of the 11 beta HSD-2 than was glycyrrhetinic acid (GA) (approximate IC50 = 0.9 vs. 15 nM). 11 beta OH-P, progesterone, and GA were almost equipotent (IC50 = 10 and 6 nM, respectively), and 5 alpha-pregnandione and 5 beta-pregnandione were less potent (IC50 = 100 and 500 nM, respectively) inhibitors of the enzyme. When the inhibitory activities were examined with intact transfected cells, 11 alpha OH-P was more potent than GA (IC50 = 5 and 150 nM, respectively). 11 alpha OH-P was not metabolized by 11 beta HSD-2. We were unable to demonstrate the presence of 11 alpha OH-P in human urine. In conclusion, a cell line stably transfected with the rat 11 beta HSD-2 was created, and the enzyme kinetics, including inhibition, were characterized. 11 alpha OH-P was found to be a potent relatively specific inhibitor of the 11 beta HSD-2 enzyme. Its potential importance is that it is the most specific inhibitor of the 11 beta HSD-2 so far encountered and would aid in the study of the physiological importance of the isoenzyme.[1]


WikiGenes - Universities