Cerebral metabolic recovery from deep hypothermic circulatory arrest after treatment with arginine and nitro-arginine methyl ester.
BACKGROUND: Recent studies suggest that nitric oxide is important in the pathogenesis of ischemic brain injury and also has a role in controlling cerebrovascular tone. This study examines the net effects of nitric oxide on cerebral metabolic recovery after deep hypothermic circulatory arrest. METHODS: Two-week-old piglets were supported by cardiopulmonary bypass and cooled to 15 degrees C followed by 1 hour of deep hypothermic circulatory arrest, 45 minutes of reperfusion and rewarming, and then 3 hours of normothermic perfusion. Groups of 10 piglets received one of four treatments before bypass; L-nitro-arginine methyl ester, inhibitor of nitric oxide synthesis, 10 mg/kg intravenously; L-arginine, to enhance nitric oxide synthesis, 30 mg/kg intravenously before bypass and then 10 mg/kg per minute during the first hour of reperfusion; a combination of L-nitro-arginine methyl ester plus L-arginine at these same doses; and no pretreatment (controls). Cerebral high-energy phosphates and pH were measured by magnetic resonance spectroscopy in half the animals. Cerebral blood flow, metabolic rates for oxygen and glucose, and the oxidation/reduction state of cytochrome aa3 and oxygenated and deoxygenated hemoglobin measured by near-infrared spectroscopy were assessed in the other half of the piglets. RESULTS: L-nitro-arginine methyl ester significantly increased cerebral vascular resistance and markedly reduced recovery of high-energy phosphates, pH, and oxidation state of cytochrome aa3, L-arginine increased cerebral blood flow, cerebral glucose and oxygen consumption, and recovery of cytochrome aa3 oxidation and high-energy phosphates. L-Arginine did not reverse completely the effects of L-nitro-arginine methyl ester on cerebral metabolic recovery. CONCLUSION: In a piglet model of deep hypothermic circulatory arrest, L-nitro-arginine methyl ester has a deleterious effect and L-arginine has a beneficial effect on cerebral metabolic recovery. The deleterious metabolic effects of L-nitro-arginine methyl ester are only partially reversed by L-arginine. This fact suggests that there may be mechanisms in addition to inhibition of nitric oxide synthesis contributing to the neurotoxicity of L-nitro-arginine methyl ester in this model.[1]References
- Cerebral metabolic recovery from deep hypothermic circulatory arrest after treatment with arginine and nitro-arginine methyl ester. Hiramatsu, T., Jonas, R.A., Miura, T., duPlessis, A., Tanji, M., Forbess, J.M., Holtzman, D. J. Thorac. Cardiovasc. Surg. (1996) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg