The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Fluoroacetate-mediated toxicity of fluorinated ethanes.

A series of 1-(di)halo-2-fluoroethanes reported in the literature to be nontoxic or of low toxicity were found to be highly toxic by the inhalation route. Experiments were performed that showed the compounds, 1,2-difluoroethane, 1-chloro-2-fluoroethane, 1-chloro-1,2-difluoroethane, and 1-bromo-2-fluoroethane to be highly toxic to rats upon inhalation for 4 hr. All four compounds had 4-hr approximate lethal concentrations of < or = 100 ppm in rats. In contrast, 1,1-difluoroethane (commonly referred to as HFC-152a) has very low acute toxicity with a 4-hr LC50 of > 400,000 ppm in rats. Rats exposed to the selected toxic fluoroethanes showed clinical signs of fluoroacetate toxicity (lethargy, hunched posture, convulsions). 1,2-Difluoroethane, 1-chloro-2-fluoroethane, 1-chloro-1,2-difluoroethane, and 1-bromo-2-fluoroethane were shown to increase concentrations of citrate in serum and heart tissue, a hallmark of fluoroacetate intoxication. 19F NMR analysis confirmed that fluoroacetate was present in the urine of rats exposed to each toxic compound. Fluorocitrate, a condensation product of fluoroacetate and oxaloacetate, was identified in the kidney of rats exposed to 1,2-difluoroethane. There was a concentration-related elevation of serum and heart citrate in rats exposed to 0-1000 ppm 1,2-fluoroethane. Serum citrate was increased up to 5-fold and heart citrate was increased up to 11-fold over control citrate levels. Metabolism of 1,2-difluoroethane by cytochrome P450 (most likely CYP2E1) is suspected because pretreatment of rats or mice with SKF-525F, disulfiram, or dimethyl sulfoxide prevented or delayed the toxicity observed in rats not pretreated. Experimental evidence indicates that the metabolism of the toxic fluoroethanes is initiated at the carbon-hydrogen bond, with metabolism to fluoroacetate via an aldehyde or an acyl fluoride. The results of these studies show that 1-(di)halo-2-fluoroethanes are highly toxic to rats and should be considered a hazard to humans unless demonstrated otherwise.[1]


  1. Fluoroacetate-mediated toxicity of fluorinated ethanes. Keller, D.A., Roe, D.C., Lieder, P.H. Fundamental and applied toxicology : official journal of the Society of Toxicology. (1996) [Pubmed]
WikiGenes - Universities