The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Pathophysiology of the aquaporin water channels.

Discovery of aquaporin water channel proteins has provided insight into the molecular mechanism of membrane water permeability. The distribution of known mammalian aquaporins predicts roles in physiology and disease. Aquaporin-1 mediates proximal tubule fluid reabsorption, secretion of aqueous humor and cerebrospinal fluid, and lung water homeostasis. Aquaporin-2 mediates vasopressin-dependent renal collecting duct water permeability; mutations or downregulation can cause nephrogenic diabetes insipidus. Aquaporin-3 in the basolateral membrane of the collecting duct provides an exit pathway for reabsorbed water. Aquaporin-4 is abundant in brain and probably participates in reabsorption of cerebrospinal fluid, osmoregulation, and regulation of brain edema. Aquaporin-5 mediates fluid secretion in salivary and lacrimal glands and is abundant in alveolar epithelium of the lung. Specific regulation of membrane water permeability will likely prove important to understanding edema formation and fluid balance in both normal physiology and disease.[1]


  1. Pathophysiology of the aquaporin water channels. King, L.S., Agre, P. Annu. Rev. Physiol. (1996) [Pubmed]
WikiGenes - Universities