The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Damage, repair, and mutagenesis in nuclear genes after mouse forebrain ischemia-reperfusion.

To determine whether oxidative stress after cerebral ischemia-reperfusion affects genetic stability in the brain, we studied mutagenesis after forebrain ischemia-reperfusion in Big Blue transgenic mice (male C57BL/6 strain) containing a reporter lacI gene, which allows detection of mutation frequency. The frequency of mutation in this reporter lacI gene increased from 1.5 to 7.7 (per 100,000) in cortical DNA after 30 min of forebrain ischemia and 8 hr of reperfusion and remained elevated at 24 hr reperfusion. Eight DNA lesions that are characteristic of DNA damage mediated by free radicals were detected. Four mutagenic lesions (2,6-diamino-4-hydroxy-5-formamidopyrimidine, 8-hydroxyadenine, 5-hydroxycytosine, and 8-hydroxyguanine) examined by gas chromatography/ mass spectrometry and one corresponding 8-hydroxy-2'-deoxyguanosine by a method of HPLC with electrochemical detection increased in cortical DNA two- to fourfold (p < 0.05) during 10-20 min of reperfusion. The damage to gamma-actin and DNA polymerase-beta genes was detected within 20 min of reperfusion based on the presence of formamidopyrimidine DNA N-glycosylase-sensitive sites. These genes became resistant to the glycosylase within 4-6 hr of reperfusion, suggesting a reduction in DNA damage and presence of DNA repair in nuclear genes. These results suggest that nuclear genes could be targets of free radicals.[1]

References

  1. Damage, repair, and mutagenesis in nuclear genes after mouse forebrain ischemia-reperfusion. Liu, P.K., Hsu, C.Y., Dizdaroglu, M., Floyd, R.A., Kow, Y.W., Karakaya, A., Rabow, L.E., Cui, J.K. J. Neurosci. (1996) [Pubmed]
 
WikiGenes - Universities