The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Angiotensin II increases macrophage-mediated modification of low density lipoprotein via a lipoxygenase-dependent pathway.

The molecular and cellular mechanisms by which hypertension enhances atherosclerosis are poorly understood. Angiotensin II (Ang II) has been implicated in the regulation of cellular lipoxygenases (LO), which are thought to play a role in atherogenesis by inducing oxidative modification of low density lipoprotein (LDL). We sought to test the hypothesis that Ang II would stimulate murine macrophage LO activity (which has both 12- and 15-LO activity). Competitive binding studies revealed the presence of Ang II AT1 receptors on mouse peritoneal macrophages (MPM) and J-774 cells, but not on the RAW cell line. Valsartan, a specific AT1 receptor antagonist inhibited Ang II binding, whereas PD 123319, an AT2 receptor antagonist did not. Incubation of MPM or J-774 cells with Ang II (10 pM to 1 microM) for 24 h led to a 2.5-3.5-fold increase in LO activity, measured as generated 13-HODE or 12(S)-HETE. This stimulation was inhibited by valsartan, but not by PD 123319. In contrast, Ang II did not stimulate LO activity in RAW macrophages. Semiquantitative reverse transcriptase-polymerase chain reaction showed a 2-3-fold increase in LO mRNA in MPM, but not in RAW cells after treatment with Ang II. Ang II also induced an increase in 12-LO protein. In addition, pretreatment of J-774 cells with Ang II increased in a dose-dependent manner the ability of the cells to modify LDL, resulting in greater chemotactic activity for monocytes, typical of minimally modified LDL. This stimulation was inhibited by AT1 receptor blockade. In summary, these data suggest that Ang II increases macrophage LO activity via AT1 receptor-mediated mechanisms and this further increases the ability of the cells to generate minimally oxidized LDL. These studies provide a link between hypertension and the associated increased atherosclerosis observed in hypertensive patients.[1]

References

 
WikiGenes - Universities