The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

SureCN668526     9-[(4-dimethylamino-3- methyl...

Synonyms: AG-K-52705, ACMC-20d0z4, KST-1B0181, AC1L1IRD, CTK0H8247, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of PD 123319

 

High impact information on PD 123319

  • L-arginine (L-ARG) given intravenously or interstitially enhanced net fluid absorption and cGMP formation, which were completely blocked by the nitric oxide (NO) synthase inhibitor, N-nitro-L-arginine methylester (L-NAME), but not by the specific AT2 receptor antagonist, PD-123319 (PD) [6].
  • In nonfailing hearts, 69 +/- 4% of binding sites were blocked by the subtype-2-specific inhibitor PD 123319 and were therefore classified as AT2; 33 +/- 5% were blocked by the subtype-1-specific inhibitor DUP 753 and thus classified as subtype 1 [7].
  • Moreover, treatment with the selective AT1 antagonist CV-11974 before injury significantly decreased the formation of neointima in only WT mice, whereas treatment with the selective AT2 antagonist PD-123319 before injury had no effects in both animal groups [8].
  • Valsartan, a specific AT1 receptor antagonist inhibited Ang II binding, whereas PD 123319, an AT2 receptor antagonist did not [9].
  • This stimulatory effect of Ang II on Erk1 and Erk2 activities was potentiated by blockade of AT2 receptors with (S)-1-[4-(dimethylamino)-3-methylphenyl]methyl-5-(diphenylacetyl)- 4, 5,6,7-tetrahydro-1H-imidazo[4,5-C]pyridine-6-carboxylic acid (PD 123319, 1 microM) [10].
 

Chemical compound and disease context of PD 123319

 

Biological context of PD 123319

 

Anatomical context of PD 123319

 

Associations of PD 123319 with other chemical compounds

 

Gene context of PD 123319

  • In contrast, the AT2 receptor analogues PD-123319 and CGP-42112 at concentrations < 10(-6) M had no effect on ANG II binding [25].
  • The residual constrictor effect observed during AT1 receptor blockade and sensitive to PD 123319 appears to be mediated by a non-AT1 receptor [14].
  • The selective AT2 receptor ligand, CGP 42112A, antagonized AII-induced [3H]-thymidine incorporation with an IC50 of 6.3 +/- 1.3 microM while the AT2/AT1B receptor antagonist, PD 123319, was found to be almost inactive (IC50 > 10 microM).(ABSTRACT TRUNCATED AT 250 WORDS)[26]
  • Co-incubation with both losartan and PD-123319 resulted in a decrease of ERK and p38 activities in cardiomyocytes [27].
  • The binding of [125I]Sar1-angiotensin II was completely displaced by the AT1 antagonist losartan but not by the AT2 receptor ligand PD 123319, confirming the expression of angiotensin II AT1 receptors in NCI-H295 cells [28].
 

Analytical, diagnostic and therapeutic context of PD 123319

References

  1. Angiotensin receptor regulates cardiac hypertrophy and transforming growth factor-beta 1 expression. Everett, A.D., Tufro-McReddie, A., Fisher, A., Gomez, R.A. Hypertension (1994) [Pubmed]
  2. AT1 and AT2 receptor blockade and epinephrine release during insulin-induced hypoglycemia. Worck, R.H., Frandsen, E., Ibsen, H., Petersen, J.S. Hypertension (1998) [Pubmed]
  3. Role of AT1 and AT2 receptor subtypes in salt-sensitive hypertension induced by sensory nerve degeneration. Huang, Y., Wang, D.H. J. Hypertens. (2001) [Pubmed]
  4. Transcriptional and translational regulation of calpain in the rat heart after myocardial infarction--effects of AT(1) and AT(2) receptor antagonists and ACE inhibitor. Sandmann, S., Yu, M., Unger, T. Br. J. Pharmacol. (2001) [Pubmed]
  5. Effects of angiotensin II AT1- or AT2-receptor antagonists on drinking evoked by angiotensin II or water deprivation in rats. Widdop, R.E., Gardiner, S.M., Bennett, T. Brain Res. (1994) [Pubmed]
  6. Compartmentalization of extracellular cGMP determines absorptive or secretory responses in the rat jejunum. Jin, X.H., Siragy, H.M., Guerrant, R.L., Carey, R.M. J. Clin. Invest. (1999) [Pubmed]
  7. Regulation, chamber localization, and subtype distribution of angiotensin II receptors in human hearts. Regitz-Zagrosek, V., Friedel, N., Heymann, A., Bauer, P., Neuss, M., Rolfs, A., Steffen, C., Hildebrandt, A., Hetzer, R., Fleck, E. Circulation (1995) [Pubmed]
  8. Vascular injury causes neointimal formation in angiotensin II type 1a receptor knockout mice. Harada, K., Komuro, I., Sugaya, T., Murakami, K., Yazaki, Y. Circ. Res. (1999) [Pubmed]
  9. Angiotensin II increases macrophage-mediated modification of low density lipoprotein via a lipoxygenase-dependent pathway. Scheidegger, K.J., Butler, S., Witztum, J.L. J. Biol. Chem. (1997) [Pubmed]
  10. Mitogen-activated protein kinases in rat brain neuronal cultures are activated by angiotensin II type 1 receptors and inhibited by angiotensin II type 2 receptors. Huang, X.C., Richards, E.M., Sumners, C. J. Biol. Chem. (1996) [Pubmed]
  11. Participation of angiotensin receptors in acute hypoxia in mice. II. Effects of angiotensin II nonpeptide receptor ligands losartan (DuP-753) and PD-123319. Georgiev, V., Opitz, M. Methods and findings in experimental and clinical pharmacology. (1999) [Pubmed]
  12. Subtype 2 of angiotensin II receptors controls pressure-natriuresis in rats. Lo, M., Liu, K.L., Lantelme, P., Sassard, J. J. Clin. Invest. (1995) [Pubmed]
  13. Angiotensin II activates the Na+/HCO3- symport through a phosphoinositide-independent mechanism in cardiac cells. Kohout, T.A., Rogers, T.B. J. Biol. Chem. (1995) [Pubmed]
  14. Renal vascular reactivity in mice: AngII-induced vasoconstriction in AT1A receptor null mice. Ruan, X., Oliverio, M.I., Coffman, T.M., Arendshorst, W.J. J. Am. Soc. Nephrol. (1999) [Pubmed]
  15. Differential effects of angiotensin AT1 and AT2 receptors on the expression, translation and function of the Na+-H+ exchanger and Na+-HCO3- symporter in the rat heart after myocardial infarction. Sandmann, S., Yu, M., Kaschina, E., Blume, A., Bouzinova, E., Aalkjaer, C., Unger, T. J. Am. Coll. Cardiol. (2001) [Pubmed]
  16. Subclasses of angiotensin II binding sites and their functional significance. Dudley, D.T., Panek, R.L., Major, T.C., Lu, G.H., Bruns, R.F., Klinkefus, B.A., Hodges, J.C., Weishaar, R.E. Mol. Pharmacol. (1990) [Pubmed]
  17. Depressor effect of blocking angiotensin subtype 1 receptors in anterior hypothalamus. Yang, R.H., Jin, H., Wyss, J.M., Oparil, S. Hypertension (1992) [Pubmed]
  18. Influence of dietary sodium restriction on angiotensin II receptors in rat adrenals. Lehoux, J.G., Bird, I.M., Briere, N., Martel, D., Ducharme, L. Endocrinology (1997) [Pubmed]
  19. Angiotensin II stimulates nitric oxide production in pulmonary artery endothelium via the type 2 receptor. Olson, S., Oeckler, R., Li, X., Du, L., Traganos, F., Zhao, X., Burke-Wolin, T. Am. J. Physiol. Lung Cell Mol. Physiol. (2004) [Pubmed]
  20. ANG II type 2 receptor regulates smooth muscle growth and force generation in late fetal mouse development. Perlegas, D., Xie, H., Sinha, S., Somlyo, A.V., Owens, G.K. Am. J. Physiol. Heart Circ. Physiol. (2005) [Pubmed]
  21. ANG II AT2 receptor modulates AT1 receptor-mediated descending vasa recta endothelial Ca2+ signaling. Rhinehart, K., Handelsman, C.A., Silldorff, E.P., Pallone, T.L. Am. J. Physiol. Heart Circ. Physiol. (2003) [Pubmed]
  22. Angiotensin 1-7 has a biphasic effect on fluid absorption in the proximal straight tubule. Garcia, N.H., Garvin, J.L. J. Am. Soc. Nephrol. (1994) [Pubmed]
  23. AT2 receptor stimulation increases aortic cyclic GMP in SHRSP by a kinin-dependent mechanism. Gohlke, P., Pees, C., Unger, T. Hypertension (1998) [Pubmed]
  24. Angiotensin II AT2 receptor stimulation extends the upper limit of cerebral blood flow autoregulation: agonist effects of CGP 42112 and PD 123319. Näveri, L., Strömberg, C., Saavedra, J.M. J. Cereb. Blood Flow Metab. (1994) [Pubmed]
  25. Regulation of angiotensin II receptor AT1 subtypes in renal afferent arterioles during chronic changes in sodium diet. Ruan, X., Wagner, C., Chatziantoniou, C., Kurtz, A., Arendshorst, W.J. J. Clin. Invest. (1997) [Pubmed]
  26. Characterization of the angiotensin II AT1 receptor subtype involved in DNA synthesis in cultured vascular smooth muscle cells. Briand, V., Riva, L., Galzin, A.M. Br. J. Pharmacol. (1994) [Pubmed]
  27. The effect of angiotensin II on mitogen-activated protein kinase in human cardiomyocytes. Wei, C., Cardarelli, M.G., Downing, S.W., McLaughlin, J.S. Journal of the renin-angiotensin-aldosterone system : JRAAS. (2000) [Pubmed]
  28. Local renin-angiotensin system is involved in K+-induced aldosterone secretion from human adrenocortical NCI-H295 cells. Hilbers, U., Peters, J., Bornstein, S.R., Correa, F.M., Jöhren, O., Saavedra, J.M., Ehrhart-Bornstein, M. Hypertension (1999) [Pubmed]
  29. The influence of candesartan and PD123319 on responses to angiotensin II in the hindquarters vascular bed of the rat. Champion, H.C., Bivalacqua, T.J., Lambert, D.G., McNamara, D.B., Kadowitz, P.J. J. Am. Soc. Nephrol. (1999) [Pubmed]
  30. Nonpeptide angiotensin AT1 and AT2 receptor ligands modulate the upper limit of cerebral blood flow autoregulation in rats. Strömberg, C., Näveri, L., Saavedra, J.M. J. Cereb. Blood Flow Metab. (1993) [Pubmed]
  31. Effects of blockade of AT1 and AT2 receptors in brain on the central angiotensin II pressor response in conscious spontaneously hypertensive rats. Toney, G.M., Porter, J.P. Neuropharmacology (1993) [Pubmed]
  32. Angiotensin AT2 receptors regulate cerebral blood flow in rats. Strömberg, C., Näveri, L., Saavedra, J.M. Neuroreport (1992) [Pubmed]
  33. Role of angiotensin AT1 receptor in the cardiovascular response to footshock. Cierco, M., Israel, A. Eur. J. Pharmacol. (1994) [Pubmed]
 
WikiGenes - Universities