The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

Agtrap  -  angiotensin II, type I receptor-associated...

Mus musculus

Synonyms: 3300002E14Rik, AT1 receptor-associated protein, AT1R, Atrap, D4Wsu124e, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Agtrap

 

Psychiatry related information on Agtrap

 

High impact information on Agtrap

 

Chemical compound and disease context of Agtrap

 

Biological context of Agtrap

 

Anatomical context of Agtrap

  • Caveolin therefore acts as a molecular chaperone rather than a plasma membrane scaffold for AT1-R [17].
  • Despite the lack of AT1-R in caveolae, AT1-R.caveolin complexes are readily detectable in cells co-expressing both proteins [17].
  • The mRNA of ATRAP was abundantly expressed in kidney, heart, and testis but was poorly expressed in lung, liver, spleen, and brain [18].
  • In wild-type fibroblasts, Ang II increased collagen synthesis accompanied by an increase in expression of tissue inhibitor of metalloproteinase (TIMP)-1, and these increases were inhibited by valsartan, an AT1 receptor blocker, but augmented by PD123319, an AT2 receptor antagonist [19].
  • Immunoreactive AT1-R was detected mainly on the neovascularized vascular endothelial cells in which expression was reduced by TCV-116 and lisinopril [1].
 

Associations of Agtrap with chemical compounds

  • Cloning and characterization of ATRAP, a novel protein that interacts with the angiotensin II type 1 receptor [18].
  • Mislocalization results in aberrant maturation and surface expression of AT1-R, effects that are not reversed by supplementing cells with cholesterol [17].
  • CONCLUSION: The results indicate an Ang II-induced NO release in Af of mice, which is mediated by AT1-R [20].
  • These findings show ATRAP to be abundantly and broadly distributed in nephron segments where the AT1 receptor is expressed [21].
  • Stimulation of AT2-R during AT1-R inhibition with ZD7155, and preconstriction with norepinephrine (NE) had no influence on the diameter [20].
 

Physical interactions of Agtrap

 

Regulatory relationships of Agtrap

  • The carboxyl-terminal cytoplasmic domain of the angiotensin II type 1 (AT1) receptor has recently been shown to interact with several classes of cytoplasmic proteins that regulate different aspects of AT1 receptor physiology [18].
  • Blockade of the AT1 receptor enhances the production of NO via the AT2 receptor in both wild-type and B2-null mice [23].
  • CONCLUSIONS: AT1-R signaling blockade inhibited retinal ICAM-1 upregulation and leukocyte adhesion and infiltration in the EIU model [24].
 

Other interactions of Agtrap

  • Effects of olmesartan, an AT1 receptor antagonist, on hypoxia-induced activation of ERK1/2 and pro-inflammatory signals in the mouse lung [25].
  • Oral treatment of ApoE-/- mice with either hydralazine or irbesartan reduced systolic blood pressure to the same level; however, only AT1 receptor antagonist treatment reduced atherosclerotic lesion formation and improved endothelial function [5].
  • The nonpeptide AT1 receptor blocker losartan antagonizes Ang II-induced [Ca2+]i increases in both cell groups, supporting mediation by native AT1B receptors and effective coupling of this subtype to second messenger systems leading to calcium entry and mobilization [26].
  • CONCLUSION: These data indicate the existence of an opposite cross-talk of AT1R and AT2R with EGF receptors, and suggest a complex functional interaction between these pathways in the regulation of cellular growth processes [27].
  • These data suggest that AT-1 receptor signaling pathways through EGFR may serve as a therapeutic target to inhibit the development of CKD [28].
 

Analytical, diagnostic and therapeutic context of Agtrap

References

  1. Blockade of angiotensin AT1a receptor signaling reduces tumor growth, angiogenesis, and metastasis. Fujita, M., Hayashi, I., Yamashina, S., Itoman, M., Majima, M. Biochem. Biophys. Res. Commun. (2002) [Pubmed]
  2. Chronic angiotensin II receptor blockade induces cardioprotection during ischemia by increased PKC-epsilon expression in the mouse heart. Lange, S.A., Wolf, B., Schober, K., Wunderlich, C., Marquetant, R., Weinbrenner, C., Strasser, R.H. J. Cardiovasc. Pharmacol. (2007) [Pubmed]
  3. Pathophysiology of abdominal aortic aneurysms: insights from the elastase-induced model in mice with different genetic backgrounds. Thompson, R.W., Curci, J.A., Ennis, T.L., Mao, D., Pagano, M.B., Pham, C.T. Ann. N. Y. Acad. Sci. (2006) [Pubmed]
  4. cAbl tyrosine kinase mediates reactive oxygen species- and caveolin-dependent AT1 receptor signaling in vascular smooth muscle: role in vascular hypertrophy. Ushio-Fukai, M., Zuo, L., Ikeda, S., Tojo, T., Patrushev, N.A., Alexander, R.W. Circ. Res. (2005) [Pubmed]
  5. Inhibition of diet-induced atherosclerosis and endothelial dysfunction in apolipoprotein E/angiotensin II type 1A receptor double-knockout mice. Wassmann, S., Czech, T., van Eickels, M., Fleming, I., Böhm, M., Nickenig, G. Circulation (2004) [Pubmed]
  6. Central angiotensin II controls alcohol consumption via its AT1 receptor. Maul, B., Krause, W., Pankow, K., Becker, M., Gembardt, F., Alenina, N., Walther, T., Bader, M., Siems, W.E. FASEB J. (2005) [Pubmed]
  7. Factor XIIIA transglutaminase crosslinks AT1 receptor dimers of monocytes at the onset of atherosclerosis. AbdAlla, S., Lother, H., Langer, A., el Faramawy, Y., Quitterer, U. Cell (2004) [Pubmed]
  8. Cardiac-specific overexpression of AT1 receptor mutant lacking G alpha q/G alpha i coupling causes hypertrophy and bradycardia in transgenic mice. Zhai, P., Yamamoto, M., Galeotti, J., Liu, J., Masurekar, M., Thaisz, J., Irie, K., Holle, E., Yu, X., Kupershmidt, S., Roden, D.M., Wagner, T., Yatani, A., Vatner, D.E., Vatner, S.F., Sadoshima, J. J. Clin. Invest. (2005) [Pubmed]
  9. Mechanical stress activates angiotensin II type 1 receptor without the involvement of angiotensin II. Zou, Y., Akazawa, H., Qin, Y., Sano, M., Takano, H., Minamino, T., Makita, N., Iwanaga, K., Zhu, W., Kudoh, S., Toko, H., Tamura, K., Kihara, M., Nagai, T., Fukamizu, A., Umemura, S., Iiri, T., Fujita, T., Komuro, I. Nat. Cell Biol. (2004) [Pubmed]
  10. The novel angiotensin II type 1 receptor (AT1R)-associated protein ATRAP downregulates AT1R and ameliorates cardiomyocyte hypertrophy. Tanaka, Y., Tamura, K., Koide, Y., Sakai, M., Tsurumi, Y., Noda, Y., Umemura, M., Ishigami, T., Uchino, K., Kimura, K., Horiuchi, M., Umemura, S. FEBS Lett. (2005) [Pubmed]
  11. Role of interleukin-6 in cardiomyocyte/cardiac fibroblast interactions during myocyte hypertrophy and fibroblast proliferation. Fredj, S., Bescond, J., Louault, C., Delwail, A., Lecron, J.C., Potreau, D. J. Cell. Physiol. (2005) [Pubmed]
  12. The calcium-channel blocker, azelnidipine, enhances the inhibitory action of AT1 receptor blockade on ischemic brain damage. Iwai, M., Chen, R., Ide, A., Iwanami, J., Tomochika, H., Tomono, Y., Mogi, M., Horiuchi, M. J. Hypertens. (2006) [Pubmed]
  13. Telmisartan inhibits both oxidative stress and renal fibrosis after unilateral ureteral obstruction in acatalasemic mice. Sugiyama, H., Kobayashi, M., Wang, D.H., Sunami, R., Maeshima, Y., Yamasaki, Y., Masuoka, N., Kira, S., Makino, H. Nephrol. Dial. Transplant. (2005) [Pubmed]
  14. Angiotensin II type I antagonist prevents pulmonary metastasis of murine renal cancer by inhibiting tumor angiogenesis. Miyajima, A., Kosaka, T., Asano, T., Asano, T., Seta, K., Kawai, T., Hayakawa, M. Cancer Res. (2002) [Pubmed]
  15. Identification and characterization of AGTRAP, a human homolog of murine Angiotensin II Receptor-Associated Protein (Agtrap). Wang, W., Huang, Y., Zhou, Z., Tang, R., Zhao, W., Zeng, L., Xu, M., Cheng, C., Gu, S., Ying, K., Xie, Y., Mao, Y. Int. J. Biochem. Cell Biol. (2002) [Pubmed]
  16. Interleukin-6 induces oxidative stress and endothelial dysfunction by overexpression of the angiotensin II type 1 receptor. Wassmann, S., Stumpf, M., Strehlow, K., Schmid, A., Schieffer, B., Böhm, M., Nickenig, G. Circ. Res. (2004) [Pubmed]
  17. Caveolin interacts with the angiotensin II type 1 receptor during exocytic transport but not at the plasma membrane. Wyse, B.D., Prior, I.A., Qian, H., Morrow, I.C., Nixon, S., Muncke, C., Kurzchalia, T.V., Thomas, W.G., Parton, R.G., Hancock, J.F. J. Biol. Chem. (2003) [Pubmed]
  18. Cloning and characterization of ATRAP, a novel protein that interacts with the angiotensin II type 1 receptor. Daviet, L., Lehtonen, J.Y., Tamura, K., Griese, D.P., Horiuchi, M., Dzau, V.J. J. Biol. Chem. (1999) [Pubmed]
  19. Regulation of collagen synthesis in mouse skin fibroblasts by distinct angiotensin II receptor subtypes. Min, L.J., Cui, T.X., Yahata, Y., Yamasaki, K., Shiuchi, T., Liu, H.W., Chen, R., Li, J.M., Okumura, M., Jinno, T., Wu, L., Iwai, M., Nahmias, C., Hashimoto, K., Horiuchi, M. Endocrinology (2004) [Pubmed]
  20. AT1 receptors mediate angiotensin II-induced release of nitric oxide in afferent arterioles. Patzak, A., Lai, E.Y., Mrowka, R., Steege, A., Persson, P.B., Persson, A.E. Kidney Int. (2004) [Pubmed]
  21. Interacting molecule of AT1 receptor, ATRAP, is colocalized with AT1 receptor in the mouse renal tubules. Tsurumi, Y., Tamura, K., Tanaka, Y., Koide, Y., Sakai, M., Yabana, M., Noda, Y., Hashimoto, T., Kihara, M., Hirawa, N., Toya, Y., Kiuchi, Y., Iwai, M., Horiuchi, M., Umemura, S. Kidney Int. (2006) [Pubmed]
  22. Changes in angiotensin II receptors in dopamine-rich regions of the mouse brain with age and ethanol consumption. Daubert, D.L., Meadows, G.G., Wang, J.H., Sanchez, P.J., Speth, R.C. Brain Res. (1999) [Pubmed]
  23. Angiotensin AT2 receptors directly stimulate renal nitric oxide in bradykinin B2-receptor-null mice. Abadir, P.M., Carey, R.M., Siragy, H.M. Hypertension (2003) [Pubmed]
  24. Suppression of ocular inflammation in endotoxin-induced uveitis by blocking the angiotensin II type 1 receptor. Nagai, N., Oike, Y., Noda, K., Urano, T., Kubota, Y., Ozawa, Y., Shinoda, H., Koto, T., Shinoda, K., Inoue, M., Tsubota, K., Yamashiro, K., Suda, T., Ishida, S. Invest. Ophthalmol. Vis. Sci. (2005) [Pubmed]
  25. Effects of olmesartan, an AT1 receptor antagonist, on hypoxia-induced activation of ERK1/2 and pro-inflammatory signals in the mouse lung. Tanabe, Y., Morikawa, Y., Kato, T., Kanai, S., Watakabe, T., Nishijima, A., Iwata, H., Isobe, K., Ishizaki, M., Nakayama, K. Naunyn Schmiedebergs Arch. Pharmacol. (2006) [Pubmed]
  26. Angiotensin AT1B receptor mediates calcium signaling in vascular smooth muscle cells of AT1A receptor-deficient mice. Zhu, Z., Zhang, S.H., Wagner, C., Kurtz, A., Maeda, N., Coffman, T., Arendshorst, W.J. Hypertension (1998) [Pubmed]
  27. Functional cross-talk between angiotensin II and epidermal growth factor receptors in NIH3T3 fibroblasts. De Paolis, P., Porcellini, A., Savoia, C., Lombardi, A., Gigante, B., Frati, G., Rubattu, S., Musumeci, B., Volpe, M. J. Hypertens. (2002) [Pubmed]
  28. Angiotensin II regulation of TGF-beta in murine mesangial cells involves both PI3 kinase and MAP kinase. Perlman, A., Lawsin, L.M., Kolachana, P., Saji, M., Moore, J., Ringel, M.D. Ann. Clin. Lab. Sci. (2004) [Pubmed]
 
WikiGenes - Universities