The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Inhibition of tryptase TL2 from human T4+ lymphocytes and inhibition of HIV-1 replication in H9 cells by recombinant aprotinin and bikunin homologues.

The serine esterase TL2 from human T4+ lymphocytes is a binding component to HIV-1 glycoprotein gp120 and seems to play a role in the HIV-1 infection mechanism. Recombinant variants of the Kunitz-type serine proteinase inhibitor aprotinin were investigated for their ability to inhibit tryptase TL2 and the binding of gp120 to this enzyme. Furthermore, the viral replication of HIV-1 was investigated H9 cell cultures under the influence of recombinant aprotinin and bikunin variants. In contrast to native aprotinin, the recombinant variant [Arg15, Phe17, Glu52] aprotinin with a reactive-site sequence homologous to the V3 loop of HIV-1 gp120 showed a specific inhibition of tryptase TL2 (> 80%). However, the [Leu15, Phe17, Glu52] aprotinin variant with hydrophobic subsites was the most potent inhibitor of the binding of gp120 to tryptase TL2 (68%). Our results show that the enzyme activity of purified tryptase TL2 is inhibited not only by variants with basic amino acids, but also those with hydrophobic residues in the reactive-site region. Therefore, tryptase TL2 is not a typical trypsin-like or chymotrypsin-like protease. Investigations on inhibition of HIV-1 replication in H9 cell cultures showed that tryptase TL2 is involved in the mechanism of virus internalization into human lymphocytes. The [Leu15, Phe17, Glu52] aprotinin showed a significant retardation of syncytium formation over a period of 5 days in a 1 micro M concentration. Similar investigations were performed with recombinant variants of bikunin, the light chain of human inter-alpha-trypsin inhibitor. Only the single-headed variant [Arg94] delta 2 bikunin inhibited slightly the syncytium formation over a period of 2 days in a 2.2 micro M concentration. Wild-type bikunin and all full-length variants showed no effect, possibly due to steric hindrance by the second domain of the double-headed inhibitor.[1]

References

  1. Inhibition of tryptase TL2 from human T4+ lymphocytes and inhibition of HIV-1 replication in H9 cells by recombinant aprotinin and bikunin homologues. Brinkmann, T., Schäfers, J., Gürtler, L., Kido, H., Niwa, Y., Katunuma, N., Tschesche, H. J. Protein Chem. (1997) [Pubmed]
 
WikiGenes - Universities