The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Retinoic acid-enhanced invasion through reconstituted basement membrane by human SK-N-SH neuroblastoma cells involves membrane-associated tissue-type plasminogen activator.

Al-trans retinoic acid (RA) enhanced human, S-type, SK-N-SH neuroblastoma cell invasion of reconstituted basement membrane in vitro but did not induce terminal differentiation of this cell line. In contrast to basal invasion, which was urokinase (uPA)- and plasmin-dependent, RA-enhanced invasion was dependent on tissue-type plasminogen activator (t-PA) and plasmin activity. Neither basal nor RA-enhanced invasion involved TIMP-2 inhibitable metalloproteinases. Enhanced invasion was associated with the induction of t-PA expression, increased expression of the putative t-PA receptor amphoterin, increased association of t-PA with cell membranes and increased net membrane-associated PA activity. Enhanced invasion was not associated with significant changes in the expression of uPA or its membrane receptor UPAR; plasminogen activator inhibitors PAI-1 and PAI-2; metalloproteinases MMP-1, MMP-2, MMP-3, MMP-9 and membrane type MMP1; or tissue inhibitors of metalloproteinases TIMP-1 and TIMP-2. RA stimulated the association of t-PA with the external cell membrane surface, which could be inhibited by heparin sulphate but not by mannose sugars or chelators of divalent cations, consistent with a role for amphoterin. Our data indicate that RA can promote the malignant behavior of S-type neuroblastoma cells refractory to RA-mediated terminal differentiation by enhancing their basement membrane invasive capacity. We suggest that this results from the action of a novel, RA-regulated mechanism involving stimulation of t-PA expression and its association with the cell membrane leading to increased PA-dependent matrix degradation.[1]

References

 
WikiGenes - Universities