The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Aspartate transcarbamylase of Escherichia coli. Heterogeneity of binding sites for carbamyl phosphate and fluorinated analogs of carbamyl phosphate.

Some preparations of both native aspartate transcarbamylase from Escherichia coli and catalytic subunit have fewer tight binding sites per oligomer for carbamyl-P than the number of catalytic peptide chains. In contrast, the number of sites for the tight-binding inhibitor N-(phosphonacetyl)-L-aspartate does equal the number of catalytic chains in each case. Binding of the labile carbamyl-P was determined using rapid gel filtration, with conversion to stable carbamyl-L-aspartate during collection. Native enzyme (six catalytic chains) obtained from cells grown under the conditions of J.C. Gerhart and H. Holoubek (J. Biol. Chem. (1967) 242, 2886-2892) has 5.4 tight sites for carbamyl-P at pH 8.0 (KD = 9.9 muM), whereas native enzyme from cells grown with higher concentrations of glucose, uracil, and histidine (to yield more enzyme per unit volume of culture) has only 1.9 tight sites at pH 8.0 (KD = 4.6 muM) and only 2.3 tight sites at pH 7.0 (KD = 2.6 muM). At pH 8.0, catalytic subunit (three catalytic chains) obtained from the former native enzyme has 2.2 tight sites for carbamyl-P (KD = 2.4 muM) and the number of sites is 2.3 in the presence of 35 mM succinate, whereas catalytic subunit obtained from the latter native enzyme has 1.8 tight sites (KD = 3.6 muM) in the absence of succinate and 2.3 tight sites in its presence. The number of tight binding sites is also less than the number of subunit peptide chains in 19F nuclear magnetic resonance experiments performed with catalytic subunit and two fluorinated analogs of carbamyl-P at comparable concentrations of analogs and active sites. A model is proposed in which incomplete removal of formylmethionine from the NH2 termini of the enzyme under conditions of extreme depression affects affinity for ligands.[1]


WikiGenes - Universities