Molecular cloning, sequencing, and heterologous expression of the vaoA gene from Penicillium simplicissimum CBS 170.90 encoding vanillyl-alcohol oxidase.
The cDNA encoding vanillyl-alcohol oxidase (EC 1.1.3.7) was selected from a cDNA library constructed from mRNA isolated from Penicillium simplicissimum CBS 170.90 grown on veratryl alcohol by immunochemical screening. The vaoA-cDNA nucleotide sequence revealed an open reading frame of 1680 base pairs encoding a 560-amino acid protein with a deduced mass of 62,915 Da excluding the covalently bound FAD. The deduced primary structure shares 31% sequence identity with the 8alpha-(O-tyrosyl)-FAD containing subunit of the bacterial flavocytochrome p-cresol methyl hydroxylase. The vaoA gene was isolated from a P. simplicissimum genomic library constructed in lambdaEMBL3 using the vaoA-cDNA as a probe. Comparison of the nucleotide sequence of the vaoA gene with the cDNA nucleotide sequence demonstrated that the gene is interrupted by five short introns. Aspergillus niger NW156 prtF pyrA leuA cspA transformed with the pyrA containing plasmid and a plasmid harboring the complete vaoA gene including the promoter and terminator was able to produce vaoA mRNA and active vanillyl-alcohol oxidase when grown on veratryl alcohol and anisyl alcohol. A similar induction of the vaoA gene was found for P. simplicissimum, indicating that similar regulatory systems are involved in the induction of the vaoA gene in these fungi. Introduction of a consensus ribosome binding site, AGAAGGAG, in the vaoA-cDNA resulted in elevated expression levels of active vanillyl-alcohol oxidase from the lac promoter in Escherichia coli TG2. The catalytic and spectral properties of the purified recombinant enzyme were indistinguishable from the native enzyme.[1]References
- Molecular cloning, sequencing, and heterologous expression of the vaoA gene from Penicillium simplicissimum CBS 170.90 encoding vanillyl-alcohol oxidase. Benen, J.A., Sánchez-Torres, P., Wagemaker, M.J., Fraaije, M.W., van Berkel, W.J., Visser, J. J. Biol. Chem. (1998) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg